Academic year 2015-16

Post Graduated Master Course TUNNELLING AND TUNNEL BORING MACHINES

Lecturer : Dr. GIORDANO RUSSO Subject of the lesson : GEOMECHANICAL CLASSIFICATIONS Company / Affiliation : GEODATA ENGINEERING

Endorced by

Società Italiana Gallerie Italian Tunnelling Society

With the support of

Outline of the lesson

Part	Subject	Slides n.
I	General setting	12
II	Earliest classification systems	35
Ш	RMR & RME systems	34
IV	Q & Qtbm systems	24
V	Rock Mass Index (RMi)	21
VI	Geological Strength Index (GSI)	22
VII	RMR-Q-RMi comparison	13
VIII	Excavation behaviour classification	42 (+5video)
	Total	200 (+5video)

I - General setting (1 di 12)

The design methods of underground constructions can be basically divided in [7]:

- "analytical" methods → mainly based on stress/strain analysis around the cavity (for example: numerical methods);
- "observational" methods → mainly based on behaviour monitoring during excavation, as well as on the the analysis of ground/support interation (for example, in general terms the NATM);
- "empirical" methods → mainly based on previous experiences of tunneling (for example, the geomechanical classifications)

I - General setting (2 di 12)

The geomechanical classifications developed and widespread as a design empirical methods with the main purpose of [7]:

• subdividing the rock masses in geomechanical groups with similar behaviour;

 providing a valid base to understand the mechanical properties of rock masses;

 making the design easier, based on statistical analysis of precedent experiences;

• assuring a common language between different types of technicians involved in the design.

• According to the "Italian Guideline for Design, Tendering and Construction of Underground Works" [37] (LGP, fig.1), an exhaustive design should consider analytical (most important), empirical and observational components;

• following this approach, in the Italian current practice, the Geomechanical Classifications are only a part of a more complete design procedure, mainly useful for:

- \rightarrow the geomechanical zoning and the definitions of input parameters for the design analysis;
- \rightarrow the assessment of loading condition on structures;
- \rightarrow temporary support recommendations.

I - General setting (5 di 12)

It is conceptually important to distinguish [46]:

Geomechanical classes or groups (G.G.) ↓	\rightarrow Constituted by rock masses with comparable geomechanical characteristics (intrinsic properties)
Behavior categories (C.C.) ↓	→ Describe the deformation response of the cavity upon excavation, corresponding to different combinations of geomechanical and in-situ stress conditions
Technical Classes (C.T.)	\rightarrow Are directly associated with the different project solution (i.e. with the typical sections of excavation and support)

I - General setting (6 di 12)

Main Classification Systems

Method	Author	Year	G.G.	C.C.	C.T.
Rock loads (T)	Terzaghi	1946	(combined	system)	indications
Stand-up time	Lauffer	1958÷1988		\checkmark	\checkmark
RQD system	Deere	1964	\checkmark		\checkmark
RSR system	Wickham	1972	\checkmark		√
RMR system	Bieniawski	1973÷1989	\checkmark		\checkmark
Lombardi	Lombardi	1974		\checkmark	
(R-P)	Rabcewicz- Pacher	1974	(combined	system)	indications
Q system	Barton et al.	1974÷1999	\checkmark		√
Strength-size	Franklin	1975	\checkmark		\checkmark
RMi	Palmstrom	1995÷2000	\checkmark		\checkmark
GSI	Hoek et al.	1995÷2000	\checkmark		
Adeco-RS	Lunardi	1993		\checkmark	indications
GD Classification	Russo et al.	1998 ÷2007		√	indications

• As shown previously, (fig.2) the geomechanical classifications of an underground project can be used as:

- a method of assessment of input geomechanical parameters (equivalent-continuum model) about design analysis $(\rightarrow GEO)$;
- an empirical method of design ($\rightarrow PRO$)
- Therefore, the choice of the most appropriate Geomechanical Classification is also a function of the foreseen usage:
 - in the first case (→GEO) "pure quantitative" system are more advisable [for istance GSI (fabric index) and RMi];
 - in the second case ($\rightarrow PRO$) traditional "quantitative" systems are more indicate (such as **RMR**, **Q- System**, and even **RMi**).

I - General setting (8 di 12)

Note: (1) Deere, 1964; (2) Franklin, 1975; (3) Hoek, 1994 and Hoek et al., 1995; (4) Palmstrøm, 1996; (5) 1993; (6) 1975; (7) 1981; (8) Terzaghi, 1946; (9) Wickham, 1972; (10) Barton et al., 1974, 1994; (11) Bieniawski, 1973, 1989; (12) 1974; (13) Lauffer, 1958, 1988. Per la bibliografia si veda Russo (1994) - *For bibliography refer to Russo (1994)*

Fig.2 [46]

I - General setting (9 di 12)

	Т	R-P	RSR	RMR	Q	RQD	GSI	RMi
Geomechanical quality \downarrow	√q_	√q₋	√q+ <i>i</i>	√q+ <i>i</i>	√q+ <i>i</i>	√q+ <i>p</i>	√q+ <i>p</i>	√q+ <i>p</i>
Rock mass parameters \downarrow				\checkmark	\checkmark		\checkmark	\checkmark
Evaluation of the loads \downarrow	1		√	√	√	(√)		
Indications about support	1	1			_ √	(√)		\checkmark

Note: $q_/q^+$ =with qualitative/quantitative assessment; p/i = "pure"/ibrid index; () proposed by other authors.

Geomechanical Classifications limitations (1 of 3):

- As according to Guidelines (LGP), Geomechanical classifications cannot be the only means of design, particularly in more detailed phases and for permanent lining definition;
- often a problematic application to weak rocks (>>tendency of a geomechanical over evaluation of continuous rock masses) and/or to structurally complex rock formations (>> difficult parameter definition) [44];
- as an empirical method, they are generally more reliable for dimensioning radial stabilization measures in fractured rock masses, where mainly gravitational failures occur;

I - General setting(11 di 12)

Geomechanical Classifications limitations (2 of 3):

- The limits of using only empirical method for the design are even more evident under difficult geomechanical conditions, where:
 - an analytical method of the ground-structure interaction is essential for structure dimensioning;
 - special interventions are often necessary, generally not proposed by classifications systems, whose definition varies from case to case (for example, the face and the profile preconfinement, presupport ("umbrella"), the rock mass improvement, etc.).

I - General setting(12 di 12)

Geomechanical Classifications limitations (3 of 3):

•Hoek & Brown (1980) "recommend classification systems for general use in the preliminary design of underground excavations"

•Bieniawski (1997) is of the opinion that "rock mass classifications on their own should only be used for preliminary, planning purpose and not for final support"

•Stille & Palmstrom (2003) "strongly argued against using the existing classification systems as the only indicator to define the rock support or other engineering items"

QUALITATIVE INDIRECT METHODS

Basic scheme:

Qualitative rock mass characterization \rightarrow

 \rightarrow Definitions of structure loads \rightarrow

 \rightarrow Support dimensioning

ROCK LOAD CLASSIFICATION (Terzaghi, 1946)

Main features:

- Formulated for the assessment of rock loads for dimensioning a support composed by steel ribs;
- N. 9 rock mass classes are defined (fig.4), with correlated rock load conditions (function of the tunnel dimensions), and indications about the expected behavior of the cavity are given;
- the rock load mobilization mechanism is showed in the figg. 3 and 5;
- the modification proposed by Deere (1970) is presented in fig.6

II - Rock Load Classification (PRO $\rightarrow A1$)

Fig.3: Load movement scheme on the tunnel (Terzaghi, 1946)[35]

Terzaghi's rock load classification of 1946.

Rock load H_p in feet of rock on tunnel roof with width B(ft) and height $H_i(ft)$ at depth of more than $1.5(B + H_i)$.

Rock condition	Rock load H_p in feet	Remarks
1. Hard and intact	Zero	Light lining required only if spalling or popping occurs.
2. Hard stratified or schistose	0 to 0.5 <i>B</i>	Light support, mainly for protec- tion against spalls. Load may change erratically from point to point.
3. Massive, moderately jointed	0 to 0.25B	
4. Moderately blocky and seamy	$0.25B$ to $0.35(B + H_1)$	No side pressure.
5. Very blocky and seamy	$(0.35 \text{ to } 1.10)(B + H_i)$	Little or no side pressure.
6. Completely crushed	$1.10(B + H_i)$	Considerable side pressure. Softening effects of seepage towards bottom of tunnel require either continuous support for lower ends of ribs or circular ribs.
 Squeezing rock, moderate depth 	$(1.10 \text{ to } 2.10)(B + H_i)$	Heavy side pressure, invert struts required. Circular ribs are recommended.
8. Squeezing rock, great depth	$(2.10 \text{ to } 4.50) (B + H_{,})$	
9. Swelling rock	Up to 250 feet, irrespective of the value of $(B + H_i)$	Circular ribs are required. In extreme cases use yielding support.

Definitions:

Intact rock contains neither joints nor hair cracks. Hence, if it breaks, it breaks across sound rock. On account of the injury to the rock due to blasting, spalls may drop off the roof several hours or days after blasting. This is known as a *spalling* condition. Hard, intact rock may also be encountered in the *popping* condition involving the spontaneous and violent detachment of rock slabs from the sides or roof.

Stratified rock consists of individual strata with little or no resistance against separation along the boundaries between strata. The strata may or may not be weakened by transverse joints. In such rock, the spalling condition is quite common.

Moderately jointed rock contains joints and hair cracks, but the blocks between joints are locally grown together or so intimately interlocked that vertical walls do not require lateral support. In rocks of this type, both spalling and popping conditions may be encountered.

Blocky and seamy rock consists of chemically intact or almost intact rock fragments which are entirely separated from each other and imperfectly interlocked. In such rock, vertical walls may require lateral support.

Crushed but chemically intact rock has the character of a crusher run. If most or all of the fragments are as small as fine sand grains and no recementation has taken place, crushed rock below the water table exhibits the properties of a water-bearing sand.

Squeezing rock slowly advances into the tunnel without perceptible volume increase. A prerequisite for squeeze is a high percentage of microscopic and sub-microscopic particles of micaceous minerals or of clay minerals with a low swelling capacity.

Swelling rock advances into the tunnel chiefly on account of expansion. The capacity to swell seems to be limited to those rocks which contain clay minerals such as montmorillonite, with a high swelling capacity.

Fig.4 [7]

cing () (%)	Rock condition	Rock load, H _p		Remarks	
spa (cm RQD		Initial	Final		
	1. Hardandintact	0	0	ic load	Lining only if spalling or popping
<u>98</u> 0	2. Hard stratified or schistose	0	0.25 B	essure. Errat o point.	Spallingcommon
95			0.68	de pr oint t	Sida proceure if strata
_90	3. Massive, moderately jointed	0	0.58	lly no sid from po	inclined, some spalling
0 75	4. Moderatelyblocky and seamy	0	0.25B to 0.35C	Genera changes	
.0 <u>50</u>	5. Veryblocky, seamy and shattered	0 to 0.6C	0.35C to 1.1C		Little or no side pressure
<u>25</u> <u>10</u>	6. Completely crushed		1.1C		Considerable side pressure. If seepage, continuous support
_2	7. Gravel and sand	0.54C to 1.2C	0.62C to 1.38C		Dense Side pressure
2		0.94C to 1.2C	1.08C to 1.38C		$P_h = 0.3\gamma(0.5H_t + H_p)$ Loose
Weak and coherent	8. Squeezing, moderate depth		1.1C to 2.1C		Heavy side pressure. Continuous support required
	9. Squeezing, great depth		2.1C to 4.5C	(
	10. Swelling		up to 250ft.		Use circular support. In extreme cases: yielding support

Notes:

1. For rock classes 4, 5, 6, 7, when above ground water level, reduce loads by 50%. 2. B is tunnel width, $C = B + H_t$ = width + height of tunnel.

3. $\gamma = \text{density of medium}$.

Fig.6 [7]

Tunnel Diameter D = 15m (\approx 49in.) in granite; H=100m; $\sigma c = 50-100MPa$; RQD = (80)-100% Discontinuity Spacing (2 systems + 1 random) = =0.6-2m (\approx 2-6.5in.) Prevalent System (K1) with dip direction against tunnel advance and dip= 80°, slightly weathered and rough. Dry.

→<u>Terzaghi</u>:

- Massive rock, moderately jointed;
- Rock load H_p=0÷0.25D (according Deere H_p=0÷ 0.5D)
- Light support to prevent the falling of localized blocks

QUALITATIVE DIRECT METHODS

Basic scheme:

Rock mass qualitative characterization \rightarrow

→ Support dimensioning/ Construction phases and procedures

II - Rabcewicz-P. (PRO \rightarrow B1)

RABCEWICZ-PACHER CLASSIFICATION (1974)

Main features

- Developed on the system base classification proposed by Lauffer¹ (1958) originating The New Austrian Tunnelling Method (NATM)
- n.6 rock classes are considered (fig.7), a qualitative description of the characteristics and the behaviour is associated to applicative procedures and support dimensioning
- For the mechanized excavation with TBM specific adaptation and development have been arranged, as proposed by the Austrian Norm (ONORM) 2203 (fig.8), furthermore modified in fig.9.

Note: 1 The classified method proposed by Lauffer will be shown in the "direct quantitative methods" section

THE NEW AUSTRIAN TUNNELLING METHOD (NATM) ROCK CLASSIFICATION ACCORDING TO RABCEWICZ-PACHER

ROCK CLASSES	I FROM STABLE TO SLIGHTLY BRITTLE	II VERY BRITTLE	III UNSTABLE TO VERY UNSTABLE	IV SQUEEZING	Va VERY SQUEEZING	Vb LOOSE MATERIAL
CHARACTERISTICS	COMPACT MATERIAL, SLIGHT TO MEDIUM FISSURING	HEAVY DIVISION INTO STRATA AND FRACTURING, SINGLE FISSURES ARE FULL OF CLAYEY MATERIAL; SCHISTOSE INTERCALATIONS	VERY HEAVY DIVISION INTO STRATA AND FRACTURING ON SEVERAL PLANES: FISSURES ARE FULL OF CLAYEY MATERIAL.	VERY WEATHERED ROCK: FOLDED AND SCHISTOSE; BANDSOF FAULTS; WELL CONSOLIDATED, COHESIVE, LOOSE MATERIAL	COMPLETELY MYLONITIZED AND WEATHERED REDUCED TO SCREE, NOT CONSOLIDATED, SLIGHTLY COHESIVE	LOOSE MATERIAL, NON-COHESIVE
CHARACTERISTICS	UNI AXIAL COMPRESSIVE STRENG TANGENTIAL STRESS &; PERMA EQUILIBRIUM OR GUARANTEED F MEASURES OF REINFO LOCAL PROTECTION RING O ROCK I	STH G _{ad} IS GREATER THAN THE NENT CONDITIONS OF 3Y: DRCEMENT OF THE F LOAD BEARING N THE CROWN	THE LIMIT STRENGTH OF THE ROCK IS REACHED AND EXCEEDED AROUND THE CROSS SECTION. SUPPORTS AND THE CREATION OF A RING OF LOAD BEARING ROCK ARE NECESSARY	THE TANGENTIAL STRESSES EXCEED MATERIAL HAS PLASTIC BEHAVIOUF CAVITY REDUCING THE CROSS SECTI PHENOMENON: MEDIUM LATERAL THRUSTS AND RAISING OF ARE WITHSTOOD BY THE FULLY CLO:	THE STRENGTH OF THE ROCK. THE R AND TENDS TO MOVE INTO THE ON; INTENSITY OF THE STRONG THE FLOOR. THE MOVEMENTS SED LOAD BEARING RING	SEE CLASS Va
INFLUENCE OF WATER	NONE	UNIMPORTANT	MAINLY ON THE CAVITY, OF THE FISSURES	FAIR	EVEN STRONG (THE MATERIAL TENDS TO BECOME SOAKED)	
EXCAVATION	FULL FACE		TOP HEADING AND BENCH	DIVISION OF FACE: I – IV	DIVISION OF FACE: I-VI	DIVISION OF FACE: 1- VI
ACTIV	VE STABILISAT	ION CROSS S	ECTION TYPES	5 FOR TUNNEL	Ø~10.00 m	
ROCK CLASSES	1		ш	IV	V	VI
CROSS SECTION TYPES			1800	180	210	210
CHARACTERISTICS	ADVANCE STEP 3.5/4.5 m.	ADVANCE STEP 2.5/3.5 m. LOCALLY END ANCHORED ROCK BOLTS L=4.00 m. STEEL MESH REINFORCEMENT	ADVANCE STEP 1.5/2.5 m. SYSTEMATIC END ANCHORED ROCK BOLTS L=4.00 m. STEEL MESH REINFORCEMENT	ADVANCE STEP 1.0/1.6 m. SYSTEMATIC FULLY BONDED ROCK BOLTS L=4.00 m. STEEL RIBS STEEL MESH REINFORCEMENT LINING	ADVANCE STEP 0.8/1.2 m. SYSTEMATIC FULLY BONDED ROCK BOLTS L=4.00 m. STEEL RIBS STEEL MESH REINFORCEMENT LINING	ADVANCE STEP 0.5/1.0 m. SYSTEMATIC FULLY BONDED ROCK BOLTS L=4.00 m. STEEL RIBS STEEL MESH REINFORCEMENT Thcknss=10+20+50=85 cm.
	1000000000000000000000000000000000000	Incknss=5+5+30=40 cm.	Incknss=10+10+35=55 cm	TUNNEL INVERT	TUNNEL INVERT Thcknss=0.75m.	TUNNEL INVERT THCKNSS=0.85m.

Fig.7 [derived from13]

Rock type	Rock behavior	Requirements for excavation and support measures for continuous advance
A Stable rock to rock liable to rockfall. This rock type includes all rock, which	A1 Stable Very quickly subsiding, low deformations, no chips falling after the removal of loose rock pieces.	Support is not necessary. Stand-up time: more than three weeks.
signs of rupture.	A2 Liable to rockfall Very quickly subsiding, low deformations, isolated loosening of rock pieces from the crown and upper sides due to jointing.	Support is only necessary in the crown, abutment and upper area of tunnel sides to secure isolated blocks. Installation of support in working area 2 without interruption of the machine advance. Stand-up time: 3 weeks to 4 days.
B Fractured rock. This rock type covers all rock, which due to lack of bonding strength in the joints and/or lack of lack of interlocking, tends to loosen.	B1 Fractured Very quickly subsiding, low deformations; low rock strength due to joints and blasting vibration cause loosening and de-bonding of the rock bonding in the crown and upper parts of the tunnel sides.	 B1.1 Systematic installation of support to a low extent, primarily in the crown, abutment and side areas in the work-free area 2, without interruption of the machine advance. Stand-up time: 2 to 4 days. B1.2 Systematic installation of support in the crown, abutment and side areas in the working areas 1 and 2. The machine advance is affected by the installation of support. Stand-up time: 2 days to 10 hours.
	B2 Strongly fractured Deformations subside quickly; low rock strength determined by the joints, low in- terlocking, high movement of pieces and blasting leads to quick, deep loosening and collapsing of rock from free unsup- ported surfaces.	 B2.1 Systematic installation of support measures, beginning immediately behind the cutter head, the duration of support installation generally determines the advance rate. Cutting proceeds only in partial strokes. Stand-up time: 10 to 5 hours. B2.2 Systematic preliminary support in cutter head area and systematic support installation to the entire working area in working area 1. Stand-up time: without preliminary support, 5 to 2 hours.

Austrian ÖNORM B 2203 (1994) for TBM (1 of 2)

Fig.8 [29]

Rock type	Rock behavior	Requirements for excavation and support measures for continuous advance
	B3 Unstable On opening of only small partial sections, the rock trickles out. Absence of cohesion and missing toothing are the causes of insufficient stability.	Continuous advance with open tunnel boring machines is only possible with special measures. Stand-up time: less than 2 hours.
C Squeezing rock. This rock type includes all rocks, where the rock strength is deeply exceeded. Rock tending to collapse and rock with prominent swelling behaviour are included in this rock type.	C1 Rock burst Elastic energy is stored in mostly heavy, hard and brittle rocks with high primary stress. Sudden conversion of this energy produces bursts of collapses with pieces of rock falling out. These pieces of rock thrown out of exposed surfaces are mostly chip shaped, the collapse only extends to shallow depths.	Installation of short, narrowly spaced anchors, if required with rein- forcing mesh, in working area 1; the machine advance is not essen- tially hindered.
	C2 squeezing Prominent, long duration and slowly sub- siding deformations. Development of rup- tures or plastic zones in plastic, strongly cohesive soil.	C2.1 systematic installation of support measures in crown, abutment and side areas. Stepwise installation of support measures in working areas 1 and 2; the machine advance is hindered by the installation of support; precautions have to be taken to prevent the jamming of the tunnel boring machine. Stand-up time: 2 days to 10 hours
		C2.2 systematic installation of support, beginning immediately behind the cutter head; the duration of the installation of support generally determines the advance rate. Cutting is only possible in partial strokes; precautions have to be taken to prevent the jamming of the tunnel boring machine. Stand-up time: 10 to 5 hours.
	C3 Strongly squeezing Large, long duration and slowly subsiding deformations with high initial deformation speed. Development of deep ruptures or plastic zones.	 C3.1 systematic installation of support in crown, abutment and side areas; stepwise installation of support measures in working areas 1 and 2. The machine advance is hindered by the installation of support; precautions have to be taken to prevent the jamming of the tunnel boring machine. Stand-up time: 10 days to 2 hours. C3.2 systematic installation of support measures, starting immediately behind the cutter head; the duration of support installation generally determines the advance rate. The cutting can only proceed in part strokes; precautions have to be taken to prevent the jamming of the tunnel boring machine. Stand-up time: 10 to 5 hours.
	C4 Flowing Very low cohesion and friction, weak plastic consistency of the soil leads to the soil flowing in, even with very small, only temporarily exposed and unsupported surfaces.	Advance with open tunnel boring machine is only possible with special measures. Stand-up time: shorter than 2 hours.
	C5 Swelling Soil types with mineral components, which depending on the relaxation through take up of water, experience an increase of volume, e.g. swellable clay minerals, salts, anhydrites.	Support measures effective in the long term accepting the swelling pressure or precautions enable the occurrence of swelling deforma- tions without damage. Advance with an open tunnel boring machine is only possible with special measures. Stand-up time: no indication.
	Rock type C Squeezing rock. This rock type includes all rocks, where the rock strength is deeply exceeded. Rock tending to collapse and rock with prominent swelling behaviour are included in this rock type. Included in this rock type.	Rock type Rock behavior B3 Unstable On opening of only small partial sections, the rock trickles out. Absence of cohesion and missing toothing are the causes of insufficient stability. C Squeezing rock. This rock type includes all rocks, where the rock C1 Rock burst Elastic energy is stored in mostly heavy, hard and brittle rocks with high primary stress. Sudden conversion of this energy roduces bursts of collapses with pieces of rock falling out. These pieces of rock falling out. These pieces of rock falling out. These pieces of rock falling out of exposed surfaces are mostly chip shaped, the collapse only extends to shallow depths. C2 squeezing C2 squeezing Prominent, long duration and slowly subsiding deformations. Development of rup-tures or plastic zones in plastic, strongly cohesive soil. C3 Strongly squeezing Large, long duration and slowly subsiding deformations with high initial deformation speed. Development of deep ruptures or plastic zones. C4 Flowing Very low cohesion and friction, weak lastic consistency of the soil leads to the soil flowing in, even with very small, only temporarily exposed and unsupported surfaces. C5 Swelling Soil types with mineral components, which depending on the relaxation through take up of water, experience an increase of volume, e.g. swellable clay minerals, salts, anhydrites.

Tunnel Diameter D = 15m (\approx 49in.) in granite; H=100m; $\sigma c = 50$ -100MPa; RQD = (80)-100% Discontinuity Spacing (2 systems + 1 random) = =0.6-2m (\approx 2-6.5in.) Prevalent System (K1) with dip direction against tunnel advance and dip= 80°, slightly weathered and rough. Dry.

→ <u>Rabcewicz- Pacher</u>:

- Massive sound rock: Class I (stable);
- Full section excavation, stand-up time of several weeks in the tunnel crown
- Local bolts + mesh in the crown or shotcrete

QUANTITATIVE DIRECT METHODS

Basic scheme:

Quantitative characterization of rock masses \rightarrow

 \rightarrow eventual derivation of geomechanical properties and/or load conditions \rightarrow

 \rightarrow support dimensioning/ Construction phases and procedures

There are methods based on a single parameter (such as "Stand-up time" by Lauffer and RQD by Deere) and methods based on the definition of more than one parameter (for example RSR, RMR, Q, RMi)

"STAND-UP TIME" SYSTEM (Lauffer, 1958÷1988) Basic features

• Based on the following concepts of (fig.11):

 \rightarrow Active unsupported span (Iw) = Minor dimension between (1) the distance from tunnel face and the first installed support and (2) the width of the tunnel.

 \rightarrow Stand-up time (ts) = Time in which the tunnel, for an active unsupported span, can remain stable after the tunnel excavation.

• 7 rock classes brought up to 9 in successive updating, are considered in the stand-up diagram.

II - Stand-up time (PRO \rightarrow C1a)

Features introduced in the up-dating of 1988 (fig.12,13,14):

• The stand-up diagram was modified, introducing the following expression:

$$t_s l_w^2 = 10^{8.9-1.7z}$$

where:

z = stand-up coefficient associated to the rock mass characteristics, variable between 0 (superior limit class AA*) and 8 (limit between classes G/H*)

 $z = (8.9 - \log t_s - 2 \log t_w)/1.7$

- new classes AA* e H*
- parallel lines spaced 1.7logt_s, divide different stand-up classes
- to determine the active unsupported span, a corrective factor "x" is introduced to consider the three-dimensional face effect
- also the TBM characteristics are considered (fig.10)

RQD SYSTEM (Deere, 1964 and following)

Main features

- Based on the parameter Rock Quality Designation (RQD) defining 5 geomechanical classes (fig.15);
- Associated with these 5 classes, quantitative indications about necessary supports, are given, differing traditional and mechanized tunnelling with TBM (fig.16);
- As seen before (fig.6), Deere linked the index RQD to Terzaghi's classification.

RQD (%)	Rock Quality
<25	Very poor '
25-50	Poor
50-75	Fair
75 –9 0	Good
90-100	Excellent

(After Deere, 1989.)

Fig.15 [8]

Fig.16bis [41quater]

Limits of RQD as fracturing index

Tunnel Diameter D = 15m (\approx 49in.) in granite; H=100m; $\sigma c = 50$ -100MPa; RQD = (80)-100% Discontinuity Spacing (2 systems + 1 random) = =0.6-2m (\approx 2-6.5in.) Prevalent System (K1) with dip direction against tunnel advance and dip= 80°, slightly weathered and rough. Dry.

\rightarrow <u>RQD (Deere)</u>:

- Good to excellent rock mass
- Occasional to systematic bolting (spacing ≈ 1.5-2m)

RSR Concept (Wickham, 1972)

Basic features:

 Definition of a rock quality index RSR (Rock Structure Rating) derived from the sum of three geological and constructive parameters (fig.17)

RSR = A+B+C

A = General area geology

- B = Joint pattern, direction of drive
- C = ground water, joint condition.
Rock structure rating - Parameter A: general area geology (after Wickham et al., 1974)

	Basic	rock ty	/pe		Geological structure					
Igneous Metamorphic Sedimentary	Hard 1 1 2	Med. 2 2 3	Soft 3 3 4	Decomp. 4 4 4	Massive	Slightly faulted of folded	Moderately faulted or folded	Intensely faulted or folded		
Type I					30	22	15	9		
Type 2					27	20	13	8		
Type 3					24	81	12	7		
Type 4					19	15	10	6		

> Rock structure rating - Parameter B: joint pattern, direction of drive (after Wickham et al., 1974)

Average	Strike	:⊥toaxis	Strike to axis						
onn spacing	Direc Both	tion of dri With dip	vc	Against o	lip	Direction of drive Both			
	Dip o Flat	f prominer Dipping	nt joints* Vertical	Dipping	Vertical	Dip c Flat	of prominer Dipping	nt joints* Vertical	
I. Very closely jointed	<u> </u>								
< 2 in.	9	11	13	10	12	9	9	7	
2. Closely jointed 2-6 in.	13	16	19	15	17	14	14	11	
3. Moderately jointed									
6–12 in.	23	24	28	19	22	23	23	19	
I. Moderate to blocky									
1–2 ít.	30	32	36	25	28	30	28	24	
5. Blocky to massive									
2-4fL	36	38	40	33	35 .	36	34	28	
5. Massive > 4 ft.	40	43	45	37	40	40	38	34	

Table 16c Rock structure rating – Parameter C: ground water, joint condition (after Wickham et al., 1974)

Anticipated water inflow	Sum of p 13-44	arameters .	A + B	45-75					
(gpm/1000ft)	Joint condition**								
	Good	Fair	Poor	Good	Fair	Poor			
None	22	18	12	25	22	18			
Slight < 200 gpm (<13 6/5)	19	15	9	23	19	14			
Moderate 200-1000 gpm	15	11	7	21	16	12			
Heavy > 1000 gpm (>63 L/s)	10	8	6	18	14	10			

•Dip: flat: 0-20 deg; dipping: 20-50 deg; and vertical: 50-90 deg.

••Joint condition: Good = tight or cemented; Fair = slightly weathered or altered; Por weathered, altered, or open.

Fig.17 [7]

- The method experimentally developed for defining a support composed by steel arches, although there are suggested different correlations with other supports (bolts and shotcrete).
- To correlate the index RSR to the particular type of support, the "RIB RATIO" (RR) was defined, so that different situations can be compared:

RR = [theoretical spacing (Sd)/ real spacing (Sa)] * 100

• Each support with steel arches was related to a theoretical spacing (Sd, fig.18) calculated using Terzaghi's expression to determine the loads in sandy grounds under water table.

II - RSR Concept (PRO \rightarrow C2a)

	8	Theoreti	cal spaci	ng of ty	pical rib	sizes for	datum o	conditio	n (sp <mark>aci</mark> r	ng in fee	t). ^(Sd)		
	TUNNEL DIAMETER												
RIB SIZE	10	12	14	16	18	20	22	24	26	28	30		
417.7	1.16												
4H13.0	2.01	1.51	1.16	0.92									
6H15.5	3.19	2.37	1.81	1.42	1.14				ing an in graph				
61120		3.02	2.32	1.82	1.46	1.20		-			1		
6H25			2.86	2.25	1.81	1.48	1.23	1.04					
8WF31				3.24	2.61	2.14	1.78	1.51	1.29	1.11	1		
8WF40					3.37	2.76	2.30	1.95	1.67	1.44	1.25		
8WF48						3.34	2.78	2.35	2.01	1.74	1.51		
10WF49								2.59	2.22	1.91	1.67		
12WF53										2.19	1.91		
12WF65											2.35		

Fig.18 [57]

```
II - RSR Concept (PRO\rightarrowC2a)
```

- Empirically, the following expressions were derived:
 - (RR+ 70)(RSR+8)=6000
 - $W_r = (D/302)^*RR$
 - W_r = (D/302)*[(6000/(RSR+8))-70]
 - S =24/W_r
 - $t = 1+W_r/1.25 = D(65-RSR)/150$

where

 $Wr = rock load (k_{ips}/ft^2 = 4.882t/m^2)$

- D = tunnel diameter (ft) (1ft=0.304m)
- S = bolting spacing (ft) with elements of 25mm diameter and design load 24000lb (\approx 11t)

t = shotcrete thickness (ft)

- Using the above formulas, diagrams were derived for the dermination of necessary support fig. 19-20
- In case of use of TBM a correction of the value of RSR is apported, as shown in fig.21.

II - RSR Concept (PRO \rightarrow C2a)

←Correlation between RSR, rock load and tunnel diameter

←Steel ribs dimensioning for a tunnel with 3.5m, 6.0m and 9.0m of diameter

Fig.19 [13]

II - RSR Concept (PRO \rightarrow C2a)

Support requirement for a 20 ft (6.1 m) diameter tunnel using the RSR concept (after Wickam et al., 1972).

Fig.20 [35]

Tunnel Diameter D = 15m (\approx 49in.) in granite; H=100m; $\sigma c = 50$ -100MPa; RQD = (80)-100% Discontinuity Spacing (2 systems + 1 random) = =0.6-2m (\approx 2-6.5in.) Prevalent System (K1) with dip direction against tunnel advance and dip= 80°, slightly weathered and rough. Dry.

 \rightarrow RSR (Wickham):

- Igneous rock of intermediate strength (Type 2);
- Geological structure: massive to slightly faulted (A = 20-27);
- B = 35 (Blocky to massive & Strike⊥axis, against dip)
- A+B = 55-62 \rightarrow C = 22
- RSR = 77- 85; Wr \approx 0.5t/m² \rightarrow systematic support not required

RMR SYSTEM (Bieniawski 1973, 1989)

Main features:

• Definition of a rock quality index RMR (Rock Mass Rating) derived from the sum of six geological-geomechanical and constructive parameters (fig.22):

RMR=a+b+c+d+e+f

а	intact rock compressive strength
b	RQD
С	Spacing of discontinuities
d	Condition of discontinuities
е	Ground water
f	Adjustment for discontinuity orientation

N	oto:	

• For a more detailed definition of the ratings recent diagrams of the same Author are used (1989) Fig.23÷27;

Fig.22: General table

RMR ratings [8].

for

• when the characteristic conditions of the discontinuities result mutually exclusive (for example infilling and roughness) use A4 and not E.

n. c	chootri	Creit		T	32			-		
		Param	eter			Range of values				
	Streng	ţth	Point-load strength index	>10 MPa	4-10 MPa	2-4 MPa	1-2 MPa	For this uniaxial test is pr	low ran compre eferred	ge - ssive
1	intact n materi	nck ial	Uniaxial comp. strength	>250 MPa	100-250 MPa	50-100 MPa	25-50 MPa	5-25 MPa	I-5 MPa	<1 MP;
		R	ating	15	12	7	4	2	- 1	0
	Drill	core	Quality RQD	90%-100%	75%-90%	50%-75%	25%-50%	1	< 25%	
2		R	ating	20	17	13	8		3	
100	Spacis	ng of o	discontinuities	>2 m	0.6-2 . m	200-600 mm	60-200 mm	1	c 60 mm	1
3		R	ating	20	15	10	8	1	5	
4	Conditi	ion of (Se	discontinuities ee E)	Very rough surfaces Slightly ro Not continuous Separation scontinuities No separation Slightly w E) Unweathered wall rock walls		Slightly rough surfaces Separation < 1 mm Highly weathered walls	Slickensided surfaces or Gouge < 5 mm thick or Separation 1-5 mm Continuous	Soft gouge >5 mm thick or Separation > 5 mm Continuous		1m nm
		R	uting	30	25	20	10		0	
		Inflo	w per 10 m el length (l/m)	None	None <10 10-25 25-125		1	> 125		
5	unnel length (//m) Ground (Joint water press)/ (Major principal o)		0.1,-0.2	0.2-0.5		> 0.5				
		Gen	ral conditions	Completely dry	Damp	Wet	Dripping		Flowing	L
	-	H	lating	15	10	7	4		0	
B. R.	ATING A	DJUS	TMENT FOR D	ISCONTINUITY ORIEN	TATIONS (See F)	-				_
Strik	e and dip	orien	tations	Very favourable	Favourable	Fair	Unfavourable	Very	Unfavor	arable
		Tu	nnels & mines	0	-2	-5	-10	-12		
R	atings	110	Foundations	0	-2	-7	-15	-25		
			Slopes	0	-5	-25	-50			-
C. R	OCK MA	SS CI	ASSES DETER	MINED FROM TOTAL	RATINGS					
Ratin	g			100 + 81	80 ← 61	60 ← 41	40 ← 21		< 21	
Class	number			1	н	in	١٧		V	
Desc	ription			Very good rock	Good rock	Fair rock	Poor rock	Ver	poor n	ock
D. M	EANING	OF R	OCK CLASSES							
Class	number			1	n	ш	IV	1	v	
Avera	age stand	up tir	ne	20 yrs for 15 m span	1 year for 10 m span	I week for 5 m span	10 hrs for 2.5 m span	30 min	for 1 m	i span
Cohe	sion of ro	ck ma	iss (kPa)	> 400	300-400	200-300	100-200	12.2.2	< 100	
Fricti	on angle	of roc	k mass (deg)	> 45	35-45	25-35	15-25		< 15	
E. GL	JIDELIN	ES FC	OR CLASSIFICA	TION OF DISCONTINU	ITY conditions					
Disco Ratin	ontinuity I g	ength	(persistence)	< 1 m 6	1-3 m 4	3-10 m 2	10-20 m 1		> 20 m 0	
Separ Ratin	ation (ap g	erture)	None 6	< 0.1 mm 5	0.1-1.0 mm 4	1-5 mm 1		S mm 0	
Roug Ratin	hness B			Very rough 6	Rough 5	Slightly rough 3	Smooth 1	Slie	kenside 0	b
Infilli Ratin	ng (goug g	e)		None 6	Hard filling < 5 mm 4	Hard filling > 5 mm 2	Soft filling < 5 mm 2	Soft fi	lling > 5 0	5 mm
Weath Ratin	hering gs			Unweathcred 6	Slightly weathcred 5	Moderately weathered 3	Highly weathered	Dec	ompose 0	ed
F. EF	FECT OF	DISC	CONTINUITY S	TRIKE AND DIP ORIEN	TATION IN TUNNELL	NG**				c
			Strike perpend	licular to tunnel axis		Strik	e parallel to tunnel axis			
	Drive w	ith dip	Dip 45-90°	Drive with dip-	Dip 20-45°	Dip 45-90°		Dip 20-45	,	
	Ve	ry fav	ourable	Favour	able	Very favourable		Fair		
1	Drive aga	inst d	ip-Dip 45-90°	Drive against di	p-Dip 20-45°	Dip 0	-20-Irrespective of strike	1		
		Fai	ir	Unfavou	rable		Fair			

Figura 26 - Abacus for the rating for the Bieniawski classification to determine spacing parameter, in a rock presenting more than one discontinuity set [in the example A=0.2m, B=0.5m, C=1m from which derives a rating of 7.

[8] modified after Laubsher (1981) and Brook and Dharmaratne (1985).

Fig. 28: proposed diagram for the definition of the rating for the "f" parameter [45]

Fig. 28bis: recently some update was proposed [33b]

Use of Parameter RQD Is Not Recommended

This parameter was included originally among the six RMR parameters because the case histories collected in 1972 all involved RQD. Over the years it became apparent that RQD was difficult to determine at tunnel face, being directed to borehole characterization, and it was subsequently combined with parameter "discontinuity spacing" ("joint" spacing)—and named "spacing density" since the two are interrelated. For the best practical use, this led to the preferred use of "fracture frequency" as an invert of "fracture density"—as depicted in Figure 14. Neither of these approaches changed the basic allocation of rating values to these parameters.

rating (Spacing+RQD) = 39.94-6.157*landa^0.476 (G.Russo, 2014)

- In function of the RMR values 5 technical classes are defined from I (very good rock) to V (very poor rock).
- The sum of the first 5 parameters (except "f") supplies BMR (Basic Mass Rating), connected to the main parameters of rock strength and deformability:

c = 5*BMR (kPa) ϕ = 5+BMR/2 (°) E_d = 2*BMR-100 (GPa, per BMR>50) E_d = 10^{(BMR-10)/40} (1)

Note: ⁽¹⁾ The original version of Serafim e Pereira (1983) considered the index of RMR. Other expressions, proposed for the determination of Hoek and Brown parameters, have been recently made with the GSI index and are regarded in a specific chapter.

Typical stand-up times for different roof spans of tunnel are proposed, according to the concepts proposed by Lauffer

Fig.29 [7]: traditional excavation \rightarrow

Note: The points represent collapse limit conditions registered

More properly, the following equation is proposed [10] in combination of the D&B chart: RMR_{TBM} =0.8RMR_{D&B}+20

Anyway this is not on the safe side for RMR<40 and the following is preferred

 The load (P) on the support and the active rock height (h_t) can be derived by the following equations (Unal, 1983,[7])

$$P = \frac{100 - RMR}{100} * \gamma * B = \gamma * h_t \qquad h_t = \frac{100 - RMR}{100} * B$$
where
$$B = \text{tunnel width (m)}$$

$$\gamma = \text{rock mass density (kg/m^3)}$$

In the previously cited update [33b]:

Design Rock Load:

$$P_{r} = \frac{100 - RMR}{100} . 10m. \left(\frac{Span}{10m}\right)^{\frac{1}{2}} . \rho_{r} . \gamma_{r}$$

where γ_r is a partial factor and ρ_r is rock density

Associated to each class, quantitative indications about ways of tunnelling and which support is necessary are given (fig.31), with the hypothesis of:

- "horse-shoe" shaped tunnel section
- tunnel width 10m
- vertical stress in situ less than 25MPa
- tunnelling with a traditional drill & blast method

Rock mass class	Excavation	Rock bolts (20 mm diameter, fully grouted)	Shotcrete	Steel sets
I – Very good rock <i>RMR</i> : 81-100	Full face, 3 m advance	Generally no support requi	ired except spot h	olting
II – Good rock RMR: 61-80	Fuil face, 1-1.5 m advance. Complete support 20 m from face	Locally, bolts in crown 3 m long, spaced 2.5 m with occasional wire mesh	50 mm in crown where required	None
III – Fair rock RMR: 41-60	Top heading and bench 1.5-3 m advance in top heading. Commence support after each blast. Complete support 10 m from face	Systematic bolts 4 m long, spaced 1.5-2 m in crown and walls with wire mesh in crown	50-100 mm in crown and 30 mm in sides	None
IV – Poor rock <i>RMR</i> : 21-40	Top heading and bench 1.0-1.5 m advance in top heading. Install support concurrently with excavation, 10 m from face	Systematic bolts 4-5 m long, spaced 1-1.5 m in crown and walls with wire mesh	100-150 mm in crown and 100 mm in sides	Light to medium ribs spaced 1.5 m where required
V – Very poor rock <i>RMR</i> : < 21	Multiple drifts 0.5-1.5 m advance in top heading. Install support concurrently with excavation. Shotcrete as soon as possible after blasting	Systematic bolts 5-6 m long, spaced 1-1.5 m in crown and walls with wire mesh. Bolt invert	150-200 mm in crown, 150 mm in sides, and 50 mm on face	Medium to heavy ribs spaced 0.75 m with steel lagging and forepoling if required. Close in- vert

Fig.31 [7]

Tunnel Diameter D = 15m (\approx 49in.) in granite; H=100m; $\sigma c = 50$ -100MPa; RQD = (80)-100% Discontinuity Spacing (2 systems + 1 random) = =0.6-2m (\approx 2-6.5in.) Prevalent System (K1) with dip direction against tunnel advance and dip= 80°, slightly weathered and rough. Dry.

→ RMR (Bieniawski):

- a = 7; b = 17-20; c = 15; d = 25; e = 15; f = 5
- RMR = 74-77 (Class II: good rock)
- Full face: 1-1.5m advance; complete support 20m from the face

 Locally bolts in crown (3m long, spaced 2.5m with occasional wire mesh) and 50mm of shotcrete in crown where required

Applicative example

A tunnel with its axis orientated south-north should be excavated in a quartz rock mass, considering the entry data:

- B = 10m (section "horse-shoe")
- $\sigma_c = 80 MPa$
- RQD = 70%
- The most significant set of discontinuities is characterized by:
 - joint set orientation 45/70 (dip direction /dip)
 - persistence = 15m; aperture = 0.1-1mm;
 - slightly rough, without infilling , moderately alterated;
- wet rock mass.

•Tasks:

RMR, BMR, rock mass class, rock loads on the supports ed necessary stabilization interventions.

Solution

Parameter	Reference	Value	Rating
а	Fig. 23	σ _c =80MPa	8
b+c	Fig. 27	RQD=70%	21
d	Fig. 22		1+4+3+6+3
е	Fig. 22	7	
f	Fig. 28		-6
		RMR	47
		Class	III
	53		
	ht = [(10	00-RMR)/100]*B	5.3m

Construction assessments (from fig.31):

- Top heading and bench: 1.5-3m advance in top heading; commence support after each blast and complete support 10m from the face;
- Support: Systematic bolts (4m long, spaced 1.5-2m in crown and walls, with wire welded mesh in crown) and shotcrete (50-100 /30mm in crown/sides).

Recently, the **Rock Mass Excavability (RME)** index was proposed by Bieniawski et al. [10bis] for estimating the performance of different types of TBM

The Rock Mass Excavability index is calculated on the basis of the following parameters:

- Uniaxial compressive strength of intact rock
- Drillability index
- Rock mass discontinuities
- Stand-up time
- Groundwater inflow

III - RME method (2008)

L	Uniaxial compressive strength of intact rock [0-25 points]												
σ _c (MPa)		<5			5-30		30-90		90-180)	:	>180	
Rating		4		14			25		14		0		
Drillability [0-15 points]													
DRI	DRI <80			8	80-65		65-3	50	50-40			<40	
Rating	ng 15				10		7		3			0	
Discontinuities in front of the tunnnel face [0-30 points]													
Homogene	Homogeneity Number of joints per meter Orientation with repect to tunnel axis												
Homogene	ous	Mixed	0-4	4-8	8-15	15-30	>30	30 Perpendicular		Obliq	ue	Parallel	
Rating	10	0	2	7	15	10	0		5	3		0	
			s	tand	up ti	ime [(0-25	points	3]				
Hours		<5			5-24		24-	98	96-19	2	>192		
Rating		0			2		1	D	15			25	
Groundwater inflow [0-5points]													
Liter/sec		>100)	7	70-100		30-70		10-30		<10		
Rating		0			1		2		4		5		

Fig.31a: RME rating system

III - RME method (2008)

.

Fig.31c: Stand-up time rating

III - RME method (2008)

DRI≈1000^{*} $\sigma_c^{-0.6}$ (with σ_c in MPa)

- Mainly on the basis of practical experience, the RME index is correlated to the Average Advance Rate (ARA)
- In particular, one theoretical (t) and one real (r) ARA are considered, the latter taking into account some practical correction factors.
- The following correlations have been derived:

TBM type	n.	σ _c >45MPa	σ _c <45MPa
Open TBM	49	ARAt=0.839*RME-40.8 (R=0.763) \rightarrow limitation: no data for RME<35	ARAt=0.324*RME-6.8 (R=0.729)
Single Shield	62	ARAt=23*[1-242 ^{(45-RME)/17}] (R=?)	ARAt=10LnRME-13 (R=0.784) →limitation: few data for RME<35
Double Shield (using grippers)	225	ARAt=0.422*RME-11.6 (R=0.658)	ARAt=0.661*RME-20.4 (R=0.867) \rightarrow limitation: only for RME>45

Note: The concept of "Optimized" Double shield may be considered considering for low RME values the single shield advance mode and for high values the double shield mode

The real Average Advance rate is calculated according the following equation:

 $ARAr = ARAt^* F_E^* F_A^* F_D$

Where

 F_E = factor of crew efficiency = 0.7+ F_{E1} + F_{E2} + F_{E3} F_A = factor of team adaption to the terrain F_D = factor of tunnel diameter

Note: Remember correction in the text

Criteria for evaluation of coefficients F_{E1}, F_{E2} and F_{E3} (after Grandori ^{[5])}

III - RME method (2008)

Contractor's TBM experience		No experience		1 to 5 tunnels built		6 to 10 TBM tunnels built		11 T tu	to 2 BM nnel	0 >21 TBM s tunnels built	
Value of F_{E1}		0		0,0	5	(0,10	(0,15	0,2	
Qualifications of the tunnelling crew		Little trained and none with TBMs			Trained but none with TBMs			Trained overall and with TBMs			
Value of $F_{\rm F}$	2	0			0,1				0,15		
Resolutions of disputes re		BM mufa turer p on site	BM nufa No TH urer manufac p on rep on ite		BM cture site	er	Tin res prob < 1 r	Time to resolve problems: < 1 month		Time to resolve problem s: > 1 month	
Value of FE3		.075	0	0		0.075		5	0		

Fig.31g: F_E rating

 $F_{E} = 0.7 + F_{E1} + F_{E2} + F_{E3}$

III - RME method (2008)

Variation of factor FA with the excavated tunnel length

Fig.31h: FA assessment
III - RME method (2008)

Variation of factor FD with tunnel diameter

Q-SYSTEM (Barton et al., 1974-1999)

Main features:

• Rock mass quality index Q (variable from 0.001 to 1000) obtained by the following equation:

$$Q = \frac{RQD}{J_n} * \frac{J_r}{J_a} * \frac{J_w}{SRF}$$

RQD	Rock Quality Designation
Jn	joint set number
Jr	joint roughness number
Ja	joint alteration number
Jw	joint water reduction factor
SRF	joint stress reduction factor

Q is variable from 0.001 to 1000..

Q = 1000 (or better)

Q = 0.001 (or worse)

Q = 100/0.5 x 4/0.75 x 1/1

Q = 10/20 x 1/8 x 0.5/ 20

Fig.31 I

from Barton, 2006

RQD	\rightarrow block size
J_n	
$\underline{J_r}$	\rightarrow inter-block shear strength
J_a	
J_w	\rightarrow active stress
SRF	

The table on fig. 32 gives the classification of individual parameters used to obtain the Tunnelling Quality Index Q for a rock mass.

A. Rock (quality designation (RQD)	B. Classification with ratings for the Joint set num	ber (Jn)
Very poor	RQD = 0 - 25%	Massive, no or few joints	Jn = 0.5 - 1
Poor	25 - 50	One joint set	2
Fair	50 - 75	One joint set plus random	3
Good	75 - 90	Two joint sets	4
Excellent	90 - 100	Two joint sets plus random	6
		Three joint sets	9
Notes:	POD is reported or measured as < 40 (including 0)	Three joint sets plus random	12
a nomin	al value of 10 is used to evaluate Q	Four or more joint sets, heavily jointed, "sugar-cube", etc.	15
(ii) RQD intervals of 5, i.e. 100, 95, 90, etc. are sufficiently		Crushed rock, earth-like	20
accurat	<u>e</u>	Notes: (i) For tunnel intersections, use (3.0 x Jn); (ii) For portals, use	(2.0 x Jn)

C. Classification with ratings for the Joint roughness number (Jr)

a) Rock-wall contact, b) rock-wall contact before 10 cm shear		c) No rock-wall contact when sheared			
Discontinuous joints	Jr = 4	Zone containing clay minerals thick enough to prevent rock- Jr = 1.0			
Rough or irregular, undulating	3	wair contact			
Smooth, undulating	2	Sandy, gravelly or crushed zone thick enough to prevent rock-	1.0		
Slickensided, undulating	1.5	wall contact	1.0		
Rough or irregular, planar	1.5				
Smooth, planar 1.0 Slickensided, planar 0.5 Note: i) Descriptions refer to small scale features, and intermediate scale features, in that order		Notes:			
		$r_{\rm s}$ I) Add 1.0 if the mean spacing of the relevant joint set is greater than 3 m			
		provided the lineations are oreintated for minimum strength			

D. Classification with ratings for the Joint alteration number (Ja)

_	JOINT WALL	CHARACTER	Condition		Wall contact
s		Healed or welded joints:	filling of quartz, epidote, etc.		Ja = 0,75
betv	CLEAN JOINTS.	Fresh joint walls:	no coating or filling, except from staining (rust)		1
act I		Slightly altered joint walls:	non-softening mineral coatings, cla	y-free particles, etc.	2
ontá jo	JOINTS WITH	Friction materials:	sand, silt calcite, etc. (non-softening	g)	3
0	COATING OF .	Cohesive materials:	clay, chlorite, talc, etc. (softening)		4
wall	FILLING OF:		Туре	Wall contact before 10 cm shear	No wall contact when sheared
no	Friction materials	sand, silt calcite, etc. (non-	and, silt calcite, etc. (non-softening)		Ja = 8
y or	Hard cohesive materials	compacted filling of clay, c	ompacted filling of clay, chlorite, talc, etc.		5 - 10
arth	Soft cohesive materials	medium to low overconsoli	idated clay, chlorite, talc, etc.	8	12
۵.	Swelling clay materials	velling clay materials filling material exhibits swelling properties		8 - 12	13 - 20

E. Classification with ratings for the Joint water reduction factor (Jw)

Dry excavations or minor inflow, i.e. < 5 l/min locally	p _w < 1 kg/cm ²	Jw = 1
Medium inflow or pressure, occasional outwash of joint fillings	1 - 2.5	0.66
Large inflow or high pressure in competent rock with unfilled joints	2.5 - 10	0.5
Large inflow or high pressure, considerable outwash of joint fillings	2.5 - 10	0.3
Exceptionally high inflow or water pressure at blasting, decaying with time	> 10	0.2 - 0.1
Exceptionally high inflow or water pressure continuing without noticeable decay	> 10	0.1 - 0.05
Note: (i) The last four factors are crude estimates. Increase Jw if drainage measures are installed		
(ii) Special problems caused by ice formation are not considered		

Fig.32 [20] : Q-System rating assessment table (1of2)

Empirical methods (PRO): Q- System

1.	Rock Quality Designation	RQD
A	Very poor	0 - 25
в	Poor	25 - 50
С	Fair	50 - 75
D	Good	75 - 90
E	Excellent	90 - 100
Note	 i) Where RQD is reported or measured as ≤ 10 (invalue of 10 is used to evaluate Q. ii) RQD intervals of 5, <i>i.e.</i>, 100, 95, 90, <i>etc.</i>, are su 	cluding 0), a nominal ufficiently accurate.
2.	Joint Set Number	J _n
A	Massive, no or few joints	0.5 - 1.0
в	One joint set	2
С	One joint set plus random joints	3
D	Two joint sets	4
E	Two joint sets plus random joints	6
F	Three joint sets	9
G	Three joint sets plus random joints	12
н	Four or more joint sets, random, heavily jointed, "sugar cube", etc.	15
J	Crushed rock, earthlike	20
Note	i) For intersections, use $(3.0 \times J_n)$ ii) For portals, use $2.0 \times J_n$)	

(2m window: RQD = 20 to 50 May need to measure)

 $(Jn = 4 \rightarrow 6 \rightarrow 9 \dots a \text{ lot is blast damage})$

Fig.32 a

3.	Joint Roughness Number	Jr
a)	Rock-wall contact, and b) rock-wall contact before 10 c	m shear
Α	Discontinuous joints	4
в	Rough or irregular, undulating	3
С	Smooth, undulating	2
D	Slickensided, undulating	1.5
E	Rough or irregular, planar	1.5
F	Smooth, planar	1.0
G	Slickensided, planar	0.5
Not	e: i) Descriptions refer to small scale features and inter features, in that order.	rmediate scale
C)	No rock-wall contact when sheared	
н	Zone containing clay minerals thick enough to prevent rock-wall contact	1.0
	Sandy, gravelly or crushed zone thick enough to	1.0

ii) $J_r = 0.5$ can be used for planar slickensided joints having lineations provided the lineations are oriented for minimum strength.

b) rock-to-rock after shearing

c) no rock-to-rock contact

Empirical methods (PRO): Q-System (Fig.32 b)

Jr = 1.5 (joints in sun)

a) rock-to-rock contact

Empirical methods (PRO): Q- System

4.	Joint Alteration Number	Ø, approx.	Ja
a)	Rock-wall contact (no mineral fillings, only coatings)		
A	Tightly healed, hard, non-softening, impermeable filling, <i>i.e.</i> , quartz or epidote		0.75
в	Unaltered joint walls, surface staining only	25-35°	1.0
с	Slightly altered joint walls. Non-softening mineral coatings, sandy particles, clay-free disintegrated rock, etc.	25-30°	2.0
D	Silty- or sandy-clay coatings, small clay fraction (non-softening)	20-25°	3.0
E	Softening or low friction clay mineral coatings, <i>i.e.</i> , kaolinite or mica. Also chlorite, talc, gypsum, graphite, <i>etc.</i> , and small quantities of swelling clays.	8-16°	4.0
ь)	Rock-wall contact before 10 cm shear (thin mineral filling	gs)	
F	Sandy particles, clay-free disintegrated rock, etc.	25-30°	4.0
G	Strongly over-consolidated non-softening clay mineral fillings (continuous, but <5mm thickness)	16-24°	6.0
н	Medium or low over-consolidation, softening, clay mineral fillings (continuous, but <5mm thickness)	12-16°	8.0
J	Swelling-clay fillings, <i>i.e.</i> , montmorillonite (continuous, but < 5mm thickness). Value of J _a depends on percent of swelling clay-size particles, and access to water, <i>etc.</i>	6-12°	8-12
c)	No rock-wall contact when sheared (thick mineral filling	s/	
KL	Zones or bands of disintegrated or crushed rock and clay (see G, H, J for description of clay condition)	6-24°	6, 8, or 8-12
N	Zones or bands of silty- or sandy-clay, small clay fraction (non-softening)	4	5.0
OP R	Thick, continuous zones or bands of clay (see G, H, J for description of clay condition)	6-24°	10, 13, or 13-20

Ja = ?? definitely 2 for weathered, maybe 4 or 6 for sandy or clay fillings

contact

c) no rock-to-rock contact

Fig.32 c

Empirical methods (PRO): Q- System

5.	Joint Water Reduction Factor	water pres. (kg/cm ²)	Jw
А	Dry excavations or minor inflow, <i>i.e.</i> , <5 I/min locally	<1	1.0
в	Medium inflow or pressure, occasional outwash of joint fillings	1-2.5	0.66
с	Large inflow or high pressure in competent rock with unfilled joints	2.5-10	0.5
D	Large inflow or high pressure, considerable outwash of joint fillings	2.5-10	0.33
E	Exceptionally high inflow or water pressure at blasting, decaying with time	>10	0.2-0.1
F	Exceptionally high inflow or water pressure continuing without noticeable decay	>10	0.1-0.05
Note	e: i) Factors C to F are crude estimates. Increase J _w	if drainage n	neasures

Jw = 0.1 or 0.2

Fig.32 d

Jw = 1 or 0.66

F. Clas	sification	n with ratings for the Stress reduction	factor (SRF)			
nes vation	Multiple weakness zones with clay or chemically disintegrated rock, very loose surrounding rock (any depth)				depth)	SRF = 10
	Single we	eakness zones containing clay or chemically d	isintegrated rock (depth of excave	ation < 50 m)	5
zor xca	Single we	eakness zones containing clay or chemically d	isintegrated rock (depth of excave	ation > 50 m)	2.5
ess d e	Multiple s	hear zones in competent rock (clay-free), loos	e surrounding rock (any depth)			7.5
akn	Single sh	ear zones in competent rock (clay-free), loose	surrounding rock (depth of excav	vation < 50 r	n)	5
Wea	Single sh	ear zones in competent rock (clay-free), loose	surrounding rock (depth of excav	vation > 50 r	n)	2.5
inte	Loose, open joints, heavily jointed or "sugar-cube", etc. (any depth)				5	
Note: (i)	Inte: (i) Reduce these values of SRF by 25 - 50% if the relevant shear zones only influence, but do not intersect the excavation $\sigma_e / \sigma_1 = \sigma_e / \sigma_c$				σ _θ / σ _c	SRF
5	Low stress, near surface, open joints			> 200	< 0.01	2.5
ss	Medium stress, favourable stress condition			200 - 10	0.01 - 0.3	1
tres tres	High stress, very tight structure. Usually favourable to stability, maybe except for walls			10 - 5	0.3 - 0.4	0.5 - 2
pete ck s robl	Moderate slabbing after > 1 hour in massive rock 5 - 3			0.5 - 0.65	5 - 50	
no d	Slabbing and rock burst after a few minutes in massive rock			3 - 2	0.65 - 1	50 - 200
0	Heavy ro	Heavy rock burst (strain burst) and immediate dynamic deformation in massive rock			> 1	200 - 400
Notes:	(ii) For stro (iii) Few cas	ngly anisotropic stress field (if measured): when 5 < se records available where depth of crown below sur	$\sigma_1/\sigma_3 < 10$, reduce σ_c to 0.75 σ_c . When face is less than span width.	σ1/σ3 > 10, r	educe σ_c to 0.	5σ _c
· · · · · · · · · · · · · · · · · · ·	Sugges	t SRF increase from 2.5 to 5 for low stress cases			$\sigma_{\theta} / \sigma_{c}$	SRF
Sauco	zing rock	Plastic flow of incompetent rock under the	Mild squeezing rock pressure		1 - 5	5 - 10
Squee	Zing Tock	influence of high pressure	Heavy squeezing rock pressure		> 5	10 - 20
Swoll	ing rock	Chemical swelling activity depending on	Mild swelling rock pressure			5 - 10
Swell	ing lock	presence of water	Heavy swelling rock pressure			10 - 15

Fig.32bis [20] : Q-System rating assessment table (2 of 2)

- 9 classes are distinguished : from a "very poor" rock mass (Q<0.01) to an "excellent" rock mass (Q>400)
- In relating the value of the index Q (fig.34) to the stability and support requirements of underground excavations, an additional parameter is defined, called "Equivalent Dimension" of excavation, (De)

De = Excavation span, diameter or height (m)/ESR where ESR= Excavation Support Ratio, is related to the degree of security which is demanded and has a similar meaning to the reciprocate of the safety factor (fig.33)

 For the determination of a temporary support could be used Q_(temp)=5Q and ESR_(temp)=1.5ESR

Туре	e of Excavation	ESR (1994)	ESR (2014)
Α	Temporary mine openings, etc.	ca. 2-5	ca. 2 to 5
В	Permanent mine openings, water tunnels for hydropower (exclude high pressure penstocks), pilot tunnels, drifts and headings for large openings, surge chambers	1.6-2.0	1.6 to 2.0
С	Storage caverns, water treatment plants, minor road and railway tunnels, access tunnels	1.2-1.3	0.9 to 1.1 Storage caverns 1.2-1.3
D	Power stations, major road and railway tunnels, civil defence chambers, portals, intersections	0.9-1.1	Major road and rail tunnels 0.5 to 0.8
E	Underground nuclear power stations, railway stations, sports and public facilities, factories, major gas pipeline tunnels	0.5-0.8	0.5 to 0.8

9) Cast concrete lining

According Palmstrom and Broch [41ter], outside the unshaded area supplementary methods should be applied

Empirical correlations with geomechanical parameters (see also fig.35)

Max unsupported span (m)	D _{max}	2Q ^{0.66}
		2ESR*Q ^{0.4}
Radial pressure acting on support (MPa)	Pr	≈0.1Q ^{-1/3}
Rock mass deformability modulus (GPa)	Μ	≈10Q _c ^{1/3}
Longitudinal sismic waves velocity ¹ P (<i>km/sec</i>)	V _p	$\approx 3.5 + \log Q_c$
Tunnel radial displacement (mm)	Δ	≈ D/Q
Lugeon Unit (U.L.)	L	≈1/Q _c

Note: $Q_c = Q^* \sigma_c / 100$; $\sigma_c =$ intact rock strength (MPa); D = excavation dimension; ¹calculated with a refraction method with a maximum depth of 25m.

Tunnel Diameter D = 15m (≈49in.) in granite; H=100m; σc = 50-100MPa; RQD = (80)-100% Discontinuity Spacing (2 systems + 1 random) = =0.6-2m (≈2-6.5in.) Prevalent System (K1) with dip direction against tunnel advance and dip= 80°, slightly weathered and rough. Dry.

\rightarrow <u>Q (Barton)</u>:

- RQD= 90; Jn=6; Jr = 1.5-2; Ja = 2; Jw = 1; SRF = 1
- Q = 11÷ 15 (Good rock mass)
- ESR = 1
- Sistematic Bolting (3-5m long, spaced 2-3m)

Proposed equation for TBM (figg. 36-37) $Q_{\text{TBM}} = Q_o * \frac{\text{SIGMA}}{F^{10}/20^9} * \frac{20}{\text{CLI}} * \frac{q}{20} * \frac{\sigma_{\theta}}{5}$

Qo = index calculated estimating RQD in the direction of the excavation and referring Jr/Ja to the joint set that mostly influences the tunnel excavation;

SIGMA = rock compressive strength (SIGMAcm= $5\gamma^*Qc^{1/3}$) or tensile strength (SIGMAtm= $5\gamma^*Qt^{1/3}$), in case ($\sigma c/Is50$)>>25 and favorable orientation of the excavation;

Qt=Q*Is50/4 where Is50 is the Point Load Test Index; γ = rock volume weight (g/cm3) F/20 = thrust per cutter (t), normalized against 20;

CLI = Cutter Life Index

```
q = quartz content (%)
```

 $\sigma\theta/5$ = average bi-axial stresses along the tunnel face MPa, normalized against a value corresponding to 100m depth.

S

Fig.36 [3]

General trends of deceleration from 145 TBM projects consisting of more than 1000 km of tunnels. (Barton, 2000b).

Fig.37 [10ter]

Figure 1.3 Recorded Cutter Life Index for some rock types. Data from Project Report 13C-98 DRILLABILITY Statistics of Drillability Test Results.

Q_{TBM} is correlated to the TBM advancement parameters

Penetration rate	PR (m/h)	5Q _{TBM} -0.2
Advance rate	AR (m/h)	U*PR
Utilisation factor	U	T ^m
Decelaration gradient (negative)	m (m/h²)	(*)

(*)
$$m \approx m_1 * (\frac{D}{5})^{0.20} * (\frac{20}{CLI})^{0.15} * (\frac{q}{20})^{0.10} * (\frac{n}{2})^{0.05}$$

Q	0.001	0.01	0.1	1	10	100	1000
m ₁ ≈	-0.9	-0.7	-0.5	-0.22	-0.17	-0.19	-0.21

note: T=time in hours; n = porosity (%)

Applicative example:

- Circular tunnel excavated by TBM
- L= 2500m; D = 8m; H = 300m; k = $(\sigma_h / \sigma_v) = 1$
- $\gamma \approx 2.5 g/cm^3$;
- RQD_o=15%;
- J_n=6;
- J_r=J_a=1;
- J_w=0.66;
- SRF=1
- $\sigma_c \approx 50 MPa$; $I_{50} \approx 0.5 MPa$;
- n ≈1%; q=20%
- F=15t; CLI=20

Tasks:

 $Q_{o},\,Q_{c},\,Q_{\text{TBM}},$ the advance of the TBM in 2 months time and the time for completion

Result (1 di 2)

Parameter	Formula	Value
Q _o	(15/6)*(1/1)*(0.66/1)	1.65
σ _c /l ₅₀	50/0.5	100
σ_{θ}	$2^{*}\gamma^{*}H = 2^{*}0.025^{*}300$	15MPa
Q _c	$Q_o^*\sigma_c/100$	0.83
SIGMA _{cm}	5 $\gamma^* Q_c^{1/3}$	12MPa
Q _t	$Q_{o}^{*}I_{50}/4$	0.21
SIGMA _{tm}	5 $\gamma^* Q_t^{1/3}$	7.4MPa
Q _{TBM}	1.65*[7.4/(15 ¹⁰ /20 ⁹)]*(20/20)*(20/20)*(15/5)	≈ 33

Solution (2 di 2)

- TBM advancement in 2 months (L_(2months))
- Completing time (T_(end))

PR	$5Q_{\text{TBM}}^{-0.2} = 5*33^{-0.2}$	2.5m/h
m ₁	(from table)	-0.20
m	$-0.20^{(8/5)^{0.20}}(20/20)^{0.15}(20/20)^{0.10}(1/2)^{0.05}$	-0.21
Т	2*30*24	1440h
U= T ^m	1440-0.21	0.22
AR	PR*U = 2.5*0.22	0.55m/h
L _(2months)	0.55*1440	792m
T _(end)	$(L/PR)^{[1/(1+m)]} = (2500/2.5)^{[1/(1-0.21)]}$	$6273h \approx 9$ months

Q_tbm limits: Advance rate for three TBM plotted against Qtbm (Sapigni et al. in 41ter)

ROCK MASS index (RMi, Palmstrom, 1995÷2000)

• The RMi index expresses the quality and the geomechanical strength of rock mass (MPa) through the multiplication between the uniaxial intact rock compressive strength (σ_c) and a corrective factor (JP) depending on the geostructural conditions (fig.38)

 \rightarrow for jointed rock masses (JP< f_{σ}):

$$RMi = \sigma_c * JP = \sigma_c * 0.2\sqrt{jC} * Vb^D$$

 \rightarrow for massive rock masses (JP>f_o):

RMi =
$$\sigma_c * f_\sigma = \sigma_c (0.05/\text{Db})^{-0.2} \approx 0.5 \sigma_c$$

Fig. 38 [41]: RMi Conceptual scheme

 JP = Jointing Parameter, correlated to rock block size and to discontinuity properties. JP can vary from 0 (very fractured rock) to 1 (intact rock).

$$JP = 0.2 * \sqrt{jC} * Vb^{D}$$
 $D = 0.37jC^{-0.2}$

- **jC** = Joint Condition factor = jL*(jR/jA)
- jR = Joint roughness factor, similar to Jr of Q-System
- **jA** = Joint alteration factor, similar to Ja of Q-System
- jL = Joint size and continuity factor: reflects the discontinuity persistence
- The criterion for assigning the rating are shown in fig. 40.

- Vb = volume of elementary blocks, expressed in m³ (fig.39)
- Db = equivalent block diameter, for cubic block $Db = \sqrt[3]{Vb}$
- f_{σ} = massivity parameter [f_{σ} = (0.05/Db)^{0.2}] Generally, for a massive rock, Db>approx. 2m and so f_{σ} ≈0.5.

Fig. 39 [41bis]: Correlations between diameter and volume of the rock block, and other parameters of fracturing

	A. Uniaxial o	compressive strength	n of intact rock,	σc					
	Found from lab. te	Found from lab. tests, simple field hammer test or assumed from handbook tables value of σ_e (in MPa)							
	B. Block vol	B. Block volume, Vb							
	Found from meas	urement at site or from d	ement at site or from drill cores, etc. (Vb can also be calculated from RQD or Jv) value of Vb (in m ³)						
	C. Joint roug	ughness factor, jR (similar to Jr in the Q-system) jR = Jr = js × jw							
		Very rough or interlock	ing			js	= 3		
	Small scale	Rough or irregular	2						
	smoothness of	Slightly rough				1.25			
	joint surface	Smooth				1			
		Polished or slickenside	d')			0.5 -	- 0.75		
	*) For slickensided s	urfaces the ratings apply to	possible movement a	along the lineations					
	T 10 10 10 10 10	Planar				jw	= 1		
	Large scale	Slightly undulating				1	.4		
	waviness of	Moderately undulating					2		
	joint plane	Strongly undulating				2	.5		
) Discontinuous (oin	Discontinuous joints)	Ear filled joints iD -	4		1	6		
	• 11///////////////////////////////////		Continuous	Discontinuous	(vstem)				
Joint size	(length) factor, jL	Length	joints	joints	, etc.	jA =	0.75		
Crack ¹⁾ (irregular	r discontinuous break)	< ~0.3m		10	cept from staining (rust)		1		
Desting (see about this isint)		< 1m	2	6	ration than the rock		2		
Very chert isint 0.2 1m		0.3 1m	2	0	eration than the rock		4		
Very short joint 0.3 – 1m		1.5	4	nthout content of clay		3			
Medium joint		3 – 10m	1.5	2		Thin filling	Thick filling		
		10 30m	0.75	2	on-softening	jA = 4	jA = 8		
	(0004	10 - 3011	0.75	-		6	5 - 10		
" Introduced 3 years	s ago (2004,n.d.r.)				1	8	12		
		Sweiling ci	ay materiais	mecule, monunoniio	nite etc.	8 - 12	13 - 20		
	E. Joint size	factor, jL (length of	f the joint) discont	inuous joints (earlier inc	luded here) have been include	d in the joint rou	ighness		
	Bedding or foliatio	n partings	length < 0.5	m		jL	= 3		
			with length ().1 - 1m			2		
	Joints		with length	1 - 10m			1		
			with length	10 - 30m		0.	75		
	Long joint filled jo	int seam or shear 1	length > 30r	n		0	5		1
	*) Often a singularity	and should if it has a signific	cant impact on stabili	ty, be treated separately	(
	F. Interlocking (compactness) of rockmass structure, IL				-				
	Very tight structure	8	Undisturbed	rock mass, tightly int	erlocked	IL =	1.3	Fig 4	40 [41bis]
	Light structure		Undisturbed,	jointed rock mass		1		9.	
	Disturbed / open		Folded / faul	ed with angular bloc	KS	0.	8 F		
	Poorly Interlocked		Broken with a	angular and rounded	DIOCKS	0.	0		

RMi [(-) (MPa)]	DESCRIPTION (-)	ROCK MASS (MPa)
<0.001	extremely low	extremely week
0.001-0.01	very low	very week
0.01-0.1	low	week
0.1-1	moderate	medium
1-10	high	strong
10-100	very high	very strong
>100	extremely high	extremely strong

Geomechanical correlations

- s =JP²
- $m_b = m_i^* J P^{0.64}$ (undisturbed rock mass)
- $m_b = m_i^* J P^{0.857}$ (disturbed rock mass)
- $E_d = 5.6 RMi^{0.375}$

where

 m_i , m_b , s = Hoek and Brown costants, (1980);

 σ_c , σ_{cm} = intact strength, rock mass strength E_d = deformability modulus

According to the flow chart of fig.41, for deriving the support required, the Continuity of Ground CF=Dt/Db (Dt, Db = tunnel, block diameter) must be before defined:

CF >100	CONTINUOUS: particulated (crushed) rocks
5> CF >100	DISCONTINUOUS: blocky rocks
CF<5	CONTINUOUS: massive rocks

Fig.42 [41]: Instability and rock mass behaviour

BLOCKY GROUND (DISCONTINUOUS)

For support definition, the Ground Condition Factor (Gc) and the Size Ratio (Sr) are defined:

 $\succ Gc = RMi^{*}(SL^{*}C) = \sigma_{c}^{*}JP^{*}(SL^{*}C)$

$$\succ Sr = CF^{*}(Co/Nj)=(Dt/Db)^{*}(Co/Nj) (1)$$

where:

- **C**= Gravity Adjustment Factor = $5-4\cos\delta$ [δ =angle (dip) of the opening surface measured from the horizontal]
- **SL**= Stress Level Adjustment (from table in fig.43)
- **Co**, Cos= Adjustment factor for the main joint orientation
- **Nj**= Adjustment factor for the number (n_j) of joint sets $(Nj=3/n_j)$

Note: (1) for weakness zones of thickness Tz < Dt the equation $Sr = (Tz/Db)^*(Co/Nj)$ is used
Fig. 43 [41bis]:

GROUND WATER INFLOW, GW	INCLINATION OF TUNNEL SURFACE, C					
Dry excavation		Horizontal (roof)		C = 1		
Damp	GW = 1	30° inclination (roof	in shaft)		1.5	
Wet	45° inclination (roof	in shaft)		2.2		
Dripping ^{")}	60° inclination (roof	in shaft)		3		
Gushing ')	Vertical (and steep v	valls)	ne - 1112 - 1112 - 1112 - 1113 - 1113 - 1113 - 1113 - 1113 - 1113 - 1113 - 1113 - 1113 - 1113 - 1113 - 1113 - 1	5		
Flowing, decaying with time Heavily flowing, without noticeable decay			,			
*) GW is related to groundwater's influence on rockmass stated	ability		1.101			
STRESS LEVEL, SL	NUMBER OF JOINT SETS, Nj *)					
Very low (in portals, etc.) (overburden < 10 m)	SL = 0.1	One set	Nj = 3	Three sets	Nj = 1	
Low (overburden 10 - 35 m)	0.5	One set + random	2	Three sets + random	0.85	
Moderate (overburden 35 - 350 m)	1	Two sets	1.5	Four sets	0.75	
High (overburden > 350 m)	1.5 ⁹	Two sets + random	1.2	Four sets + random	0.65	
*) For stability in high walls a high stress level may be unfa Possible rating, SL = 0.5 - 0.75	*) Means the number of joint sets, in the actual location only					
ORIENTATION OF JOINTS AND ZONES, C	co (related to	the tunnel)				
Very favourable	0.1	Unfavourable			Co = 2	
Favourable	Co = 1	Very unfavourable			3	
Fair	1.5					

Fig.44 [41]: Rock support chart for blocky ground

CONTINUOUS GROUND

Since the tunnelling behaviour is influenced essentially by the stress conditions, the **Competency Factor** is considered (Cg=rock mass strength / stress condition):

• for massive rocks:

 $\mathbf{Cg} = \mathbf{RMi}/\sigma_{\theta} = \mathbf{f}_{\sigma}^{*}\sigma_{c}/\sigma_{\theta} \approx \mathbf{0.5}\sigma_{c}/\sigma\theta$

• for particulate rocks:

 $\textbf{Cg} = \textbf{RMi}/\sigma_{\theta} = \textbf{JP}^{*}\sigma_{c}/\sigma_{\theta}$

Fig. 45 [41bis]: Chart for estimating support in continuous ground

Fig. 46 [41]: Recommended application of the support charts

Tunnel Diameter D = 15m (\approx 49in.) in granite; H=100m; $\sigma c = 50$ -100MPa; RQD = (80)-100% Discontinuity Spacing (2 systems + 1 random) = =0.6-2m (\approx 2-6.5in.) Prevalent System (K1) with dip direction against tunnel advance and dip= 80°, slightly weathered and rough. Dry.

 \rightarrow <u>RMi (Palmtrom)</u>:

- σ_c= 75MPa; jR=2-3; jA= 2; jL= 1, Vb= 0.5m³;
- RMi= 11.6-14.3 (σ^{cm} = 11.6-14.3MPa)
- Nj=1.2; Co= 1.5; SL=C=1; →Gc= 12-14; Sr = 24

Sistematic Bolts (3-4m long, 1.5-2m spaced) and 50-60mm of shotcrete

	Bolts (L/spacing) m	Shotcrete mm				
Terzaghi	(light localized support)					
Rabcewicz-P.	Localized + wire mesh	(in alternative)				
RSR-Concept	(no systematic support)					
RMR-System	3/2.5 + wire mesh	50 (eventual)				
Q-System	(3 ÷ 5)/(2 ÷ 3)					
RMi	(3 ÷ 4)/(1.5 ÷ 2)	50 ÷ 60				

GEOLOGICAL STRENGTH INDEX (GSI, Hoek et al., 1995÷2000)

• The GSI is introduced to better represent the rock mass structure, without to take into account other parameters such as intact strength, stress conditions, the orientation of discontinuity, the presence of water, etc.

- Initially, the Authors suggested to derive GSI:
 - \rightarrow a) from a modified RMR
 - \rightarrow b) from a modified Q-index
- In the following:
 - \rightarrow c) from graphs (qualitative assessment: Figg.47,48,49) [26,36]
- More recently, other Authors proposed:
 - \rightarrow d) from the same graph but with quantitative assessment (Figg.50a,b) [11]
 - \rightarrow e) quantitative assessment by the same input parameters for the JP estimation of RMi system (Figg. 51a,b,c,d,e) [49,50]

a) From RMR₍₁₉₈₉₎

- A modified RMR is calculated (RMR') considering a dry condition (parameter e=15) and disregarding the adjustment for the orientation of discontinuities (f = 0).
- <u>If RMR' ≥ 23</u> :

GSI = RMR' – 5 (*)

 If RMR' < 23 the GSI must be calculated using the Q-System.

Note:

- (*) if the 1976 RMR System version is used (max rating for water's parameter *e*=10), than GSI =RMR'₍₁₉₇₆₎
- conceptual problem→ GSI is mainly used to scale intact rock properties to rock mass conditions and than should be a pure geostructural index: nevertheless, RMR includes intact rock strength and than the calculation of GSI by RMR does not appear a correct procedure.

b) From Q

 Analogously, a modified Q is calculated (Q'), with Jw/SRF = 1.

Therefore:

GSI = 9InQ' + 44

• Use this expression even when RMR'<23.

C) Fig.47 [26]: **GSI** Chart

					the second se		
BEOLOGI	CAL STRENGTH INDEX				red	with	
From the con- the rock manate the a GSI) from Quoting a stating tha he Hoek-li- masses what composite sideration. proximately will general criterion shows	description of structure and surface conditions of hass, pick an appropriate box in this chart. Esti- average value of the Geological Strength index the contours. Do not attempt to be too precise, range of GSI from 36 to 42 is more realistic than t GSI = 38. It is also important to recognize that Brown criterion should only be applied to rock here the size of the individual blocks or pieces is pared with the size of the excavation under con- When individual block sizes are more than ap- y one quarter of the excavation dimension, failure Illy be structurally controlled and the Hoek-Brown hould not be used.	SURFACE CONDITIONS	VERY GOOD Very rough, fresh unweathered surfaces	GOOD Rough, slightly weathered, iron stained surfaces	FAIR Smooth, moderately weathered and alter surfaces	POOR Slickensided, highly weathered surfaces compact coatings or fillings of angular fragments	VERY POOR Slickensided, highly weathered surfaces with soft clay coatings or fillings
STRUCTU	RE		DECREA	SING SURFA	CE QUALITY		
	INTACT OR MASSIVE – intact rock specimens or massive in situ rock with very few widely spaced discontinuities		90 80		N/A	N/A	N/A
	BLOCKY - very well interlocked undisturbed rock mass consisting of cubical blocks formed by three orthogonal discontinuity sets	DF ROCK PIECES		70 60			
	VERY BLOCKY - interlocked, partially disturbed rock mass with multifaceted angular blocks formed by four or more discontinuity sets	INTERLOCKING C		50			
	BLOCKY/DISTURBED - folded and/or faulted with angular blocks formed by many intersect- ing discontinuity sets	DECREASING			40	30	
	DISINTEGRATED - poorly interlocked, heavily broken rock mass with a mixture of angular and rounded rock pieces	Ũ				20	
	FOLIATED/LAMINATED – Folded and tectoni- cally sheared foliated rocks. Schistosity prevails over any other discontinuity set, resulting in complete lack of blockiness		N/A	N/A			10

C) Fig.48 [26]: GSI chart for heterogeneous rock masses

C) Fig.49 [36]: (new) GSI chart for heterogeneous rock masses

d)

Fig.50a [11]: Modified GSI graph proposed by Cai et al. (2004)

Quantitative assessment of input parameters

Table 2 Terms to describe large-scale waviness [27]

Waviness terms	Undulation	Rating for waviness $J_{\rm W}$
Interlocking (large-scale) Stepped Large undulation Small to moderate undulation Planar	> 3% 0.3 3% <0.3%	3 2.5 2 1.5 1
		Undulation = a/D D - length between maximum amplitudes

Table 3

Terms to describe small-scale smoothness [27]

Smoothness terms	Description	Rating for smoothness J _S
Very rough	Near vertical steps and ridges occur with interlocking effect on the joint surface	3
Rough	Some ridge and side-angle are evident; asperities are clearly visible; discontinuity surface feels very abrasive (rougher than sandpaper grade 30)	2
Slightly rough	Asperities on the discontinuity surfaces are distinguishable and can be felt (like sandpaper grade 30-300)	1.5
Smooth	Surface appear smooth and feels so to touch (smoother than sandpaper grade 300)	1
Polished	Visual evidence of polishing exists. This is often seen in coating of chlorite and specially tale	0.75
Slickensided	Polished and striated surface that results from sliding along a fault surface or other movement surface	0.6-1.5

Table 4

Rating for the joint alteration factor J_{Λ} [4,27]

	Term	Description	J_{Δ}
Rock wall contact	Clear joints		
	Healed or "welded" joints (unweathered)	Softening, impermeable filling (quartz, epidote, etc.)	0.75
	Fresh rock walls (unweathered)	No coating or filling on joint surface, except for staining	1
	Alteration of joint wall: slightly to moderately weathered	The joint surface exhibits one class higher alteration than the rock	2
	Alteration of joint wall: highly weathered <i>Coating or thin filling</i>	The joint surface exhibits two classes higher alteration than the rock	4
	Sand, silt, calcite, etc.	Coating of frictional material without clay	3
	Clay, chlorite, tale, etc.	Coating of softening and cohesive minerals	4
filled joints with partial or no contact petween the rock wall surfaces	Sand, silt, calcite, etc.	Filling of frictional material without clay	4
	Compacted clay materials	"Hard" filling of softening and cohesive materials	6
	Soft clay materials	Medium to low over-consolidation of filling	8
	Swelling clay materials	Filling material exhibits swelling properties	8 12

Fig.50b [11]: Tables for evaluating the Joint Condition Factor $J_{\rm C}$

$$J_C = J_W^* J_S / J_A$$

d)

Geological Strength Index (GEO \rightarrow G2)

Fig.51a [49,50]: Integrated GSI-RMi system (GRs approach, 2007-2009) -Quantitative assessment of the same input parameters for estimating JP of RMi

•Statistical analysis of available data (from boreholes, geostructural survey,..)

- Best fitting analysis and evaluation of the of the most appropriate probabilistic distribution (continuous or discrete) for each input parameter
- Definition of the eventual correlations among parameter

• Application of MonteCarlo sampling method to derive the possible GSI variability, as result of the variability of input parameters and their random combinations

VI - GSI (GEO \rightarrow G2)

Fig.51d: Comparison between GRs (\leftarrow) and Cai et al. (\rightarrow) methods

VI - GSI (GEO \rightarrow G2)

Fig.51e: differences between the Cai and GRs approaches [50]

Fig.51 f

Geostructural index: GSI

Some H&M GSI estimates (1of2)

SMLP(LTF): graphitic schist GSI=25-40

Yacambù-Q.: graphitic phillite GSI~35

Yacambù-Q.: graphitic phillite GSI~25

Geostructural index: GSI

Some H&M GSI estimates (2of2)

Subjectivity is a problem?

Fig.51 g

The GSI is correlated to the main geomechanical rock mass parameters (→equivalent-continuum modelling)

Shear strength

Referring to the generalized Hoek and Brown failure criterion [27]

$\sigma_1' = \sigma_3' + \sigma_c \left(m_b \frac{\sigma_3'}{\sigma_c} + s \right)^a$
$m_{b} = m_{i} exp(\frac{GSI - 100}{28 - 14D})$
$s = \exp\left(\frac{\text{GSI} - 100}{9 - 3\text{D}}\right)$
$a = \frac{1}{2} + \frac{1}{6} \left(e^{-GSI/15} - e^{-20/3} \right)$

σ_{1}', σ_{3}'	Effective principal stresses
m _b ,s,a	Hoek and Brown rock mass constants ¹
D	Disturbancy factor $(0 \rightarrow 1)$
¹ for intact	rock: m _b =m _i ; s=1; a=0.5

Residual Shear Strength

VI - GSI (GEO \rightarrow G2)

GSIr= GSI*e(-0.0134*GSI) [11b]

Fig. 52: relationship between the ratio GSIr/GSI and GSI [11b] Note: the dotted linear equation has been previously proposed in [46]

Deformability

For
$$\sigma_{c} \leq 100 \text{MPa} \rightarrow E_{d}(GPa) = (1 - \frac{D}{2})\sqrt{(\sigma_{c}/100)} * 10^{\frac{GSI-10}{40}}$$
 [27]

For
$$\sigma_c > 100 \text{MPa} \rightarrow E_d(GPa) = (1 - \frac{D}{2}) * 10^{\frac{GSI - 10}{40}}$$
 [27]

More recently, Hoek and Diederichs [25] have proposed:

Simplified formulation:
$$E_d(GPa) = 100(\frac{1 - D/2}{1 + \exp((75 + 25D - GSI)/11)})$$

Complete formulation:

$$E_d = E_i (0.02 + \frac{1 - D/2}{1 + \exp((60 + 15D - GSI)/11)})$$

where Ei= Elasticy modulus from laboratory test

VI - GSI (GEO \rightarrow G2)

Fig.53: Equations based on GSI are used to derive the H&B rock mass constants (m,s,a) and the modulus of deformability (E_d)

The parameters r2, r3 and r4 represent the geostructural component of RMR and their sum is therefore conceptually equivalent to the GSI ("fabric index"). Consequently, given that the possible ranges of variability are 8 to 70 and 5 to 100, respectively, the following approximate equation can be derived:

 $(r2+r3+r4) \approx 0.65GSI+5$

or, more in general

 $RMR \approx 0.65GSI+5+r1+r5+r6$

Note that according the RMR update [33b] r2+r3 is assigned by the number of disconinuities per meter

GSI and RMR parameters affinity [ref. 51 ter] Fig.53 a

Tunnel Diameter D = 15m (\approx 49in.) in granite; H=100m; $\sigma c = 50$ -100MPa; RQD = 80-100% Discontinuity Spacing (2 systems + 1 random) = =0.6-2m (\approx 2-6.5in.) Prevalent System (K1) with dip direction against tunnel advance and dip= 80°, slightly weathered and rough. Dry.

- \rightarrow <u>GSI (Hoek et al.)</u>:
- by RMR: GSI = 74-77
- by Q: GSI = 66 68
- by Hoek graph: GSI ≈ 65-75
- by Cai approach: GSI ≈ 56-61 (Vb=0.5m³, Jc=1-1.5)
- by GRs approach: GSI ≈ 67-70 (Vb=0.5m³, jC=1-1.5)

Correlations between classification indexes

RMR = 9InQ+44	Bieniawski	1976
RMR = 13.5logQ+43	Rutledge	1978
$RMR \approx 50+15log_{10}Q$	Barton	1995
$RSR = 13.3 \log Q + 46.5$	Rutledge	1978
RSR = 0.77RMR+12.4	Rutledge	1978
RMi = 10^[(RMR-40)/15]	Palmstrom	1996
GSI = 9InQ'+44	Hoek et al.	1995
GSI = 10lnQ'+32 (R ² =0.73)	Russo et al.	1998
GSI ≈ 153-165/[1+(JP/0.19) ^{0.44}]	Russo	2007

[41bis]

Fig.59: Some types of excavation behaviour (partly from Martin et al. 1999 and Hoek et al. 1995, as reported in [41quintum])

GR	OUND BEHAN	/IOUR TYPE	DEFINITION	COMMENTS				
c	a. Stable		The surrounding ground will stand unsupported for several days or longer.	Massive, durable rocks at low and moderate dept	ths.			
drive	b. Block	of single blocks	Stable with potential fall of individual blocks	Discontinuity controlled follows				
sravity	fall(s)	of several blocks	Stable with potential fall of several blocks (slide volume < 10m ³).	Discontinuity controlled failure.				
e 1 6	c. Cave-in	(1997) 1	Inward, quick movement of larger volumes (> 10 m ³) of rock fragments or pieces.	Encountered in highly jointed or crushed rock.				
TYP	d. Running g	round	A particulate material quickly invades the tunnel until a stable slope is formed at the face. Stand-up time is zero or nearly zero.	Examples are clean medium to coarse sands and gravels above groundwater level.	ż			
	e. Buckling		Breaking out of fragments in tunnel surface.	Occurs in anisotropic, hard, brittle rock under sufficiently high load due to deflection of the rock structure.				
f. Rupturing		from stresses	Gradually breaking up into pieces, flakes, or fragments in the tunnel surface.	The time dependent effect of slabbing or rock burst from redistribution of stresses.	aviour			
Type 2 Stress induced	g. Slabbing		Sudden, violent detachment of thin rock slabs from sides or roof.	Moderate to high overstressing of massive hard, brittle rock. Includes popping or spalling. ¹⁾	tle beh			
	h. Rock burst		Much more violent than slabbing and involves considerably larger volumes (Heavy rock bursting often registers as a seismic event).	Very high overstressing of massive hard, brittle rock.	bri			
	i. Plastic be (initial)	haviour	Initial deformations caused by shear failures in combination with discontinuity and caused by overstressing	Takes place in plastic (deformable) rock from overstressing. Often the start of squeezing.	laviour			
	j. Squeezing	9	Time dependent deformation, essentially associated with creep caused by overstressing. Deformations may terminate during construction or continue over a long period	Overstressed plastic, massive rocks and materials with a high percentage of micaceous minerals or of clay minerals with a low swelling capacity.	plastic beł			
D	k. Ravelling	from slaking	Ground breaks gradually up into pieces, flakes, or fragments.	Disintegration (slaking) of some moderately coherent and friable materials. Examples: mudstones and stiff, fissured clays.	hydrati- zation			
er influence	I. Swelling	of certain rocks adsorption. The process may sometime mistaken for squeezing.		Occurs in swelling of rocks, in which anhydrite, halite (rock salt) and swelling clay minerals, such as smectite (montmorillonite) constitute a significant portion.	minerals			
3 Wate		of certain clay seams or fillings	Swelling of clay seams caused by adsorption of water. This leads to loosening of blocks and reduced shear strength of clay.	The swelling takes place in seams having fillings of swelling clay minerals (smectite, montmorillonite)	swelling			
Type	m. Flowing ground		A mixture of water and solids quickly invades the tunnel from all sides, including the invert.	May occur in tunnels below groundwater table in particulate materials with little or no coherence (a clay).	ind			
	n. Water ing	ress	Pressurized water invades the excavation through channels or openings in rocks	May occur in porous and soluble rocks, or along significant openings or channels in fractures or jo	oints.			

Fig.60: Main ground excavation behaviour [52bis]

VIII – Introduction to Behaviour Classifications

	MASSIVE ROCKS	JOINTED ROCKS or	BLOCKY MATERIALS	PARTICULATE MATERIALS	SPECIAL MATERIALS	
				occur often in weaknes	ss zones and faults	
	Α	A B		D	E	
	Weak to strong rocks	Rocks intersected by joints and partings	Jointed rocks intersected by seams or weak layers	Highly jointed or crushed rocks, and soil-like materials	Soft and weak materials	
1						
	Brittle, homogeneous and foliated rocks (granite, gneiss, quartzite)	Jointed homogeneous foliated and bedded rocks	Jointed rocks intersected by seams (filled joints) (seamy and blocky ground)	Highly jointed or crushed rocks with clay seams or shears	Alternating soft and hard layers (as clay schist- sandstone-clay schist)	
2						
	Schistose (deformable) rocks rocks with high content of platy minerals	Jointed, schistose rocks	Prominent weathering along joints	Highly jointed or crushed rocks (sugar-cube etc.) little clay	Rock fragments with few contacts, in a matrix of soft (clayish) material	
3						
	Rocks with plastic properties (soapstone, rocksalt, many weathered rocks)	Layered and bedded rocks with frequent partings (slate, flagstone)	Jointed rocks with weak bedding layers	Soil-like materials with friction properties (poorly cemented sandstones etc.)	Soft or weak materials with plastic properties (mud- stone, clay-like materials)	

Fig.61: Main types of rock mass compositions [52bis]

VIII – Introduction to Behaviour Classifications

Fig.62a: Identification of excavation behaviour [52bis]

(1 of 2)

Fig.62b: Identification of excavation behaviour [52bis]

					low - moderate	overstressed	WATER		low - moderate	overstressed	WATER	
	d by weak ed joints)		Occurrence of seams (filled joints)	C1				water inburst ⁹		falls	lling ^{a)}	
	cks intersected by seams (fille		Prominent weathering along joints	C2		fails	urst "		alis		swe	
INUOUS Jointed roc	Jointed roc		Occurrence of weak bedding layers (mainly in some sedimentary sequences)	C3	fails	block	, water inbu			block	swelling ³⁾ ravelling ⁴ (fromslaking)	
DISCON	and partings		Jointed homogeneous, foliated, and bedded rocks	B1	block falls; buckfing		vater inflow ¹		block			
	B scted by joints		Jointed, schistose rocks	B2		falls; ting	falls; ding				falls; ding	swelling ^a
	Rocks interse		Layered and bedded rocks with frequent partings (slate, flagstone, some shales)	B3		block				block buck		
					low - moderate	high	WATER		low - moderate	high	WATER	
ntact	ts		Brittle homgeneous and foliatedrocks (granite, gneiss, quartzite, etc.)	A1	il(s)	slabbing			ll(s)	rupturing		
INUOUS / I	A to strong rock ted by few joir		Schistose (deformable) rocks with high content of platy minerals	A2	ble - block fa	ormations (al)			ole - block fa	zing	swelling ^a	
CON	Weak		Plastic /deformable rocks (soapstone, rocksalt, some clayish rocks)	A3	stat	plastic def (init			stab	aanbs	swelling ^a ravelling ⁴ (fromslaking)	
-					low - moderate	overstressed	WATER		low - moderate	overstressed	WATER	
NO	TE: Wate	INFLUENC	ED / TRIGGERED BY:	->	low - moderate STRE	overstressed SSES duced: examp	WATER	nav take	low - moderate STRE	overstressed SSES	welling	

(2 of 2)
A quick overview on the Classification of the Behaviour of the excavation

It is possible to observe that there are methods based on

• <u>stability of the cavity</u>: for example the original Lauffer [30] system distinguished n.7 categories, from stable to very squeezing conditions

• <u>stability of the tunnel face</u>: for example Lunardi [34] proposed the Adeco RS approach, based on three categories: A (stable face), B (stable face in the short period) and C (unstable face)

• <u>stability of both cavity and and tunnel face</u>: for example, Lombardi [33] distinguished n.4 categories, taking into account all the possible combinations: from class I (face and cavity stable) to class IV (face and cavity unstable)

All these systems involve a qualitative assessment of the behaviour and therefore they are often open to individual interpretations. In the following a quantitative classification system developed in Geodata [46,47,48], based on deformation index of tunnel face, as well as of the cavity, is outlined.

Fig. 63: General setting of behaviour of excavation by Geodata classification: Stress analysis + geo-structural conditions [47]

VIII - Behaviour Classifications

Fig.65: General scheme for the evaluation of the excavation behaviour [47,48]

				Rock mass				
\downarrow ANALYSIS \rightarrow		Geostructural \rightarrow		Continuous ↔	> Disc	ontinuc	us ↔	Equivalent C.
Tensional↓				RMR				
Deformational response ↓	^δ ο (%)	Rp/Ro	Behavioural category ↓	I	II	III	IV	V
Elastic	negligible		а	STABLE				
(σ _θ <σ _{cm})			b	IN	▼. STÀBLE	4	>	CAVING
Elastic - Plastic	<0.5	1-2	с	SPALLING/ ROCKBURST	WED	ĜES		
(-0(11)	0.5-1.0	2-4	d					*
	>1.0	>4	e		•			SQUEEZING
			(f)	→Immediate collapse of tunnel face				

Notes: $\delta \sigma$ =radial deformation at the face; Rp/Ro=plastic radius/radius of the cavity; $\sigma \theta$ =max tangential stress; σcm =rock mass strength. The limits of shadow zones are just indicative

VIII - Behaviour Classifications

Fig.67: General scheme for the evaluation of the excavation behaviour: example of a probabilistic analysis for a relatively shallow tunnel in prevalent poor rock mass (Italian North Apennines)

Fig.67b: Additional considerations: Squeezing

Plastic deformations/Squeezing

Hoek & Marinos, 2000 [ref.26]

^δ ο (%)	Rp/Ro	Behavioural category ↓	Extract of
negligible		а	GD classification
		b	
<0.5	1-2	с	
0.5-1.0	2-4	d	Severe squeezing
>1.0	>4	е	Very severe squeezing

H&M classification based on δ_{final}

GD classification based on δ_o and Rp/Ro

Fig.67e: Additional considerations: Rockburst

Fig.67f: Additional considerations: Rockburst

It is observed that crack initiation threshold (CI) around a cavity occurs when $\sigma_{max}\approx~0.4$ ($\pm0.1)~\sigma_c$

 $\frac{r}{a} = 0.5 \left(\frac{\sigma_{\max}}{CI} + 1 \right) \qquad for \ \sigma_{\max} > CI$

a→f=increasing levels of spall damage [Ref. 15bis, 15ter]

Fig. 68a: Simplified approach for a preliminary setting of excavation behaviour [51

Fig. 68b: Simplified approach for a preliminary setting of excavation behaviour

[51ter]

Fig.68 c [reference 51ter]

Depending on type and intensity of the hazards, mitigation measures are selected and support Section Types composed

Code	EXAMPLE OF RISK MITIGATION (STABILIZATION) MEASURES FOR TUNNEL [D&B]						
	a) In advancement to the excavation						
Ma1	Controlled drainage ahead the tunnel face/contour						
Ma2	Pre-confinement/reinforcement of instable rock wedges (inclined bolts, spiling,)						
Ma3	Pre-confinement of excavation contour (reinforced grouting, jet grouting,)						
Ma4	Pre-reinforcement of rock mass contour (by fully connected elements)						
Ma5	Pre-support of excavation contour (forepoling, umbrella arch,)						
Ma6	Tunnel face pre-reinforcement (injected fibreglass elements, reinforced grouting, jet gr)						
Ma7	Grouting for water-tightness						
Ma8	De-stressing holes/blasting						
	b) During the excavation						
Mb1	Over-excavation to allow convergences (stress relief)						
Mb2	Controlled de-confinement to allow convergences (sliding joints, deformable elements,)						
Mb3	Radial confinement of instable rock wedges						
Mb4	Radial rock reinforcement (fully connected elements)						
Mb5	Confinement by differently composed system (steel ribs, fbr shotcrete, bolts,)						
Mb6	High energy adsorbing composed system (steel mesh, yielding bolts, fbr shotcrete,)						
Mb7	Tunnel face protection						
Mb8	Additional protective measures						

IV – Design actions

Prevalent Hazard		GC		Excavation behaviour		Typical
dri	ven induced	GDE	RMR			measures
		а	Ι	Stable rock mass, with only possibility of local rock block fall; rock mass of very good quality with elastic response upon excavation		Ma1-Mb3
H1 i	Wedge instability/	b	Ш	Rock wedge instability; rock mass of good quality with elastic response upon excavation		Ma1-Mb3
	Rockfall	с	≡	Pronounced tendency to rockfall; rock mass of fair quality, with possible occurrence of a moderate development of plastic zone	C1	Ma1-Mb5
		с	I-II	Mild brittle failure even associated to rock minor rock block ejection; overstressed hard, good rock mass (→Minor spalling/rockburst)		
Sf Ro H2	Spalling/ Rockburst	с	1-11	Sudden brittle failure; overstressed hard, good rock mass (→Moderate spalling/rockburst).		Ma1- Mb6-Mb7
		с	1-11	Sudden and violent brittle failure, even associated to rock block ejection; highly overstressed hard, good rock mass (→Severe spalling/ heavy rockburst)	C4	Ma1-(Ma5) (Ma8)-Mb6- Mb7-Mb8
Plastic		d	III- IV- (∀)	Development of plastic/viscous deformations; overstressed fair to poor rock mass, resulting in a significative extrusion of tunnel face and radial convergences (→Severe Squeezing)	D	Ma1-Ma5 (Ma6) (Mb4)-Mb5- Mb7
НЗ	deformations / Squeezing	e	III- IV- (∀)	Intense development of plastic/viscous deformations; overstressed fair to poor rock mass, resulting in a large extrusion of tunnel face and radial convergences (->Very Severe Squeezing)	E	Ma1-Ma4 Ma6-Mb1- Mb2-Mb4- Mb5-Mb7
H4	Caving/ Flowing ground	с	IV	Gravity-driven instability; reduced self- supporting capacity of poor rock mass, generally associated to a moderate development of plastic zone		Ma1 Ma5 (Ma6) Mb5-Mb7
		(e)/f	v	Severe gravity-driven instability, with immediate collapse of the tunnel face/excavation contour, including flowing ground; very poor quality, cataclastic rock mass, generally under conditions of high hydrostatic pressure/water inflow (fault zones, etc.)	F/ Fe	Ma1-Ma3 Ma5-Ma6 (Ma7) Mb5/(Mb2)- Mb7-Mb8

Note: GC=Geomechanical Classification; ST=Section Type

Fig. 68d: Simplified approach for a preliminary setting of excavation behaviour [51ter]

Fig.70bis: A composite graph for brittle failures..

G. Russo (2013) based on Diederichs (2007,2010) and Hoek (2010), modified

[12] CASSINELLI F., CINA S. INNAURATO N., MANCINI R., SAMPAOLO A., 1982. "Power consumption and metal wear in tunnel-boring machines: analysis of tunnelboring operation in hard rock". Proc. Tunneling 82, 73-81.

[13] CESTELLI GUIDI, 1984. "Geotecnica e tecnica delle fondazioni".

[14] DEERE D. V., 1964. "Technical description of Rock cores far engineering purposes". Rock Mechanics and Engineering Geology, Vol. 1, No.1, pp. 17-22.

[15] DIEDERICHS, M., 2005. "Design methodology for spalling failure and rockburst hazards". Expertise for Geodata.

[16] EINSTEIN, H.H., STEINER, W. and BAECHER, G.B., 1979. "Assessment of empirical Design Methods far tunnels in Rocks". Proc. 4th Rapid Excavation Tunneling Conto AIME, New York, 1979. Vol. 1, pp. 683-706.

[17] FRANKLIN J., A. "A Safety and Economy of Tunneling. Proceedings". Tenth Canadian Rock Mechanics Symposium. Ringstone, 1975, pp. 27-53.

[18] GRANDORI, R. 1996: "Avanzamento meccanico in condizioni estreme". Atti del terzo simposio europeo sulla costruzione di gallerie, Berna.

[19] GRASSO P., RUSSO G., XU S., PELIZZA S., 1993. "Un criterio per la valutazione speditiva del comportamento di gallerie allo scavo mediante classificazione geomeccanica". Gallerie e grandi opere sotterranee, n. 39, pp. 26-34.

[20] GRIMSTAD E. AND BARTON N., 1993. Updating of the Q-System for NMT. Proceed. of the Intern.Symposium on Sprayed Concrete – Moderne use of wet mix sprayed concrete for underground support, Fagernes.

[21] HOEK, E., BROWN, E.T., 1980. "Underground excavation in rock". Inst. Min. Metall., 527 p., London.

[22] HOEK, E., BROWN, E.T., 1988. "The Hoek-Brown failure criterion - a 1988 update". Proc. 15th Can. Rock Mech. Symp. University of Toronto. pp. 31-38.

[23] HOEK E., KAISER P.K. AND BAWDEN W.F., 1995. Support of Underground Excavations in Hard Rock. Balkema, Rotterdam, 215pp

[24] HOEK E., AND BROWN E.T., 1997. Practical estimates of rock mass strength. Submitted for publication to the Int. J. Rock Mech. Min. Sc.& Geomech. Abstr.

[25] HOEK E. AND DIEDERICHS M., 2006. Estimation of rock mass modulus. Int. Journal of Rock Mechanics and Mining Science.

[26] HOEK E. AND MARINOS P., 2000. Predicting Squeeze. Tunnels and Tunneling International, Part 1 & 2: (November, pp.45-51) & (December, pp.33-36).

Bibliography (2 di 5)

[15 bis] DIEDERICHS M, 2007." Mechanistic interpretation and practical application of damage and spalling prediction criteria for deep tunneling". The 2003 Canadian Geotechnical Colloquium

[15 ter] DIEDERICHS M, CARTER T., MARTIN D., 2010. "Practical rock spall prediction in Tunnels" ITA World Tunnel Congress Vancouver. [27] HOEK E., CARRANZA-TORRES C. AND CORKUM B., 2002. "Hoek-Brown Failure Criterion-2002 Edition". Proc. North American Rock Mechanics Society, Toronto.

[28] INNAURATO N., MANCINI R., RONDENA E., ZANINETTI A., 1990. "Una applicazione della classificazione delle rocce alla fresabilita' delle stesse". Boll.Ass.Min.Subalp., 13, 1-2, pp. 73-98.

[29] INNAURATO N., RONDENNA E. E ZANINETTI, 1992." Abbattimento in galleria con fresa a piena sezione: previsione e riscontri in corso d'opera" M.I.R. Torino.

[30] LAUFFER H., 1958. "Gebirgklassifizierung fur den Stollenbau". Geologie Bausen, n.24, pp.47-51.

[31] LAUFFER H., 1988. "Zur Gebirgklassifizierung bei Frasvortrieben". Felsbau n. 3.

[32] LAUFFER H., 1990. "Die Stehzeitbedingten Grenzen von TBM-Vortrieben und ihre Auswirkung auf Klassifizierung und Bauzeit", Felsbau, 8, 3, pp. 134-144.

[33] LOMBARDI G., 1974. "Tunnel Support". Proc.3rd Congr. Int. J. Rock Mech. Min.Sc. & Geomech. Abstr., Denver, Vol.IIb, pp 1515-1528.

[34] LUNARDI P., 1993. "Nuovi criteri di progetto e costruzione per una corretta pianificazione delle opere in sotterraneo". Atti del Conegno Samoter, Verona, pp.8-27

[35] MAHTAB A. AND GRASSO P., 1992. "Geomechanics Principles in the Design of Tunnels and Cavern in Rock". Elsevier, Amsterdam.

[36] MARINOS P. AND HOEK E. . (2007). "Geological Strength Index (GSI). A characterization tool for assessing engineering properties for rock masses". Proc. I.S.R.M. Workshop "Underground Works under Special Conditions", Madrid, pp 123-130

[37] NATIONAL PROJECT FOR DESIGN AND CONSTRUCTION STANDARD IN UNDERGROUND PROJECT, 1997: "Guidelines for Design, Tendering and Construction of Underground Works". Annesso a Gallerie e Grandi Opere in Sotterraneo, n.51.

[38] PACHER F., RABCEWICZ L.V., GOLSER J., 1974. Zum derzeligen Stand der Gebrigsk sifizerung in Stollen und Tunnelbau. Preference S1-8.

[39] PALMSTROM A., 1975. "Application of the volumetric joint count as a mesure of rock mass jointing". Proc. Int. Symp. Fond. Rock Joints. Biorklinden, 103-110.

[40] PALMSTROM A., 1996." Characterizing rock masses by the RMi for Use in Practical Engineering (Part 1 & 2)" Tunneling and Undergrouns Space Technology, Vol.11, (N.2, pp.175-188) & (N.3, pp. 287-303)

[27 bis] HOEK E., CARRANZA T.C, DIEDERICHS M., CORKUM B. 2008."The 2008 Kersten lecture: Integration of geotechnical and structural design in tunnelling". Proceedings University of Minnesota 56th Annual Geotechnical Engineering Conference.

Bibliography (3 di 5

[33b] LOWSON A.R & BIENIAWSKI Z.T.2013: "critical assessment of rmr-based tunnel design practices: a practical engineer's approach"Proc. RETC 2013.Washington, DC: Society of Mining Engineers, p.180-198.

[41] PALMSTROM A., 2000. "Recent developments in rock support estimates by the RMi". Journal of Rock Mechanics and Tunneling Technology, Vol.6, N.1, pp 1-19.

[41bis] PALMSTROM A., 2009. "Combining the RMR, Q, and RMi classification systems". Paper published February 2009 in www.rockmass.net

[42] RABCEWICZ L. V., 1964-65. "The new Australian tunneling method". Water Power, London. Vol. 16, n.11-12, 1964. Vol. 17 n.1, 1965.

[43] ROSE, D., 1982. "Revising Terzaghi's tunnel rock load coefficients. Proc. 23rd U.S. Symposium on Rock Mechanics, AIME, New York, pp. 953-960.

[44] RUSSO G., 1994. "Some considerations on the applicability of major geomechanical classification to weak and complex rocks in tunnelling". GEAM Geoengineering Environment and Mining n.82, pp.63-70.

[45] RUSSO G., GRASSO P. AND PELIZZA S., 1995: "Predicted vs observed round behaviour in pilot bore in schist in Northern Italy". International Colloquium "Chalk and Shales", Brussels.

[46] RUSSO G., KALAMARAS G.S. AND GRASSO P., 1998. A discussion on the concepts of geomechanical classes, behavior categories and technical classes for an underground project. Gallerie e grandi opere sotterranee, N.54, pp.40-51.

[47] RUSSO G. AND GRASSO P., 2006: Un aggiornamento sul tema della classificazione geomeccanica e della previsione del comportamento allo scavo. Gallerie e grandi opere sotterranee, N.80, pp.56-65.

[48] RUSSO G. AND GRASSO P., 2007. On the classification of the rock mass excavation behaviour in tunnelling Proc. 11th Congress of ISRM, Lisbon, pp 979-982

[49] RUSSO G. ,2007. Improving the reliability of GSI estimation: the integrated GSI-RMi system. Proc. I.S.R.M. Workshop "Underground Works under Special Conditions", Madrid, pp 123-130

[50] RUSSO G., 2009. A new rational method for calculating the GSI. Tunnelling and Underground Space Technology n.24, pp.103-111.

[51] RUSSO G., 2008. "A simplified rational approach for the preliminary assessment of excavation behaviour in tunnelling". Tunnels et Ouvrages Souterraines n.207.

[51bis] RUSSO G, REPETTO L., PIRAUD J. & LAVIGUERIE R., 2009. "Backanalysis of the extreme squeezing conditions in the exploratory adit to the Lyon-Turin base tunnel". RockEng09: Rock engineering in difficult condition - Toronto, Canada

[52] SEEBER G., 1988. "Die Neve Oresterreichischer tunnelbohrmaschinen". Felsbau n. 2, pp. 63-68.

Bibliography (4 di 5)

[41ter] PALMSTROM A. AND BROCH E., 2006. "Use and misuse of rock mass classification systems with particular reference to the Q-system". Tunnels and Underground Space Technology, vol. 21, pp575-593

[41quater] PALMSTROM A., 2006. "Measurements of and correlations between block size and rock quality designation (RQD)". Tunnels and Underground Space Technology, vol. 20, pp362-367

[41quintum] PALMSTROM A. AND STILLE H., 2007. "Ground behaviour and rock engineering tools for underground excavations)". Tunnels and Underground Space Technology, vol. 22, pp363-376

G. Russo publications can be downloaded at

http://www.webalice.it/giordandue/

[51 ter] RUSSO G. 2014."An update of the ."multiple graph" approach for the preliminary asssment of the excavation behaviour in rock tunnelling, Tunnels and Underground Space Technology, vol. 41

[52bis] STILLE H. AND PALMSTROM A., 2008. "Ground behaviour and rock mass composition in underground excavations)". Tunnels and Underground Space Technology, vol. 23, pp46-64

[53] TERZAGHI K., 1946. "Rock Defects and Loads on Tunnel Support". Rock Tunnelling with Steel Supports, ed. R. V. Proctor and T. White, Commercial Shearing Co. Youngstown, OH, pp. 15-99.

[54] WELLIS S., 1993. "Old marathon at Alassio". World Tunneling, May 1993.

[55] WICKHAM G.E., TIEDEMANN H.R., SKINNER E.H., 1972. "Support determination based on Geologic Predictions". Prooceding, Rapid Excavation and Tunneling Conference, AIME, New York, pp. 43-64.

[56] WICKHAM G.E., TIEDEMANN H.R., SKINNER E.H., 1974. "Ground support Prediction Model - RSR Concept". Proceedings, Rapid Excavation and Tunneling Conference, AIME, New York, pp. 691-707.

[57] WILBUR, L.D., 1982. "Rock Tunnels". Tunnel Engineering Handbook. Van Nostrand R. Company

Bibliography (5 di 5)